CMRB & BILD – Speaker Series Event Friday November 24, 2023 Burnswest Theatre, Fort Calgary, Alberta

Digital Twins in Urban and Regional Planning

Phil Allsopp, CEO

www.orbisdynamics.com info@orbisdynamics.com

1959 South Power Road, Suite 103-253, Mesa, Arizona, 85206 (480) 276-7707

April 11, 1970

April 11, 1970..."Houston...we've had a problem"

April 17, 1970

Safe return.....because of physical and electronic digital twins of the manned Apollo vehicles

Urban Planning, Design & Construction – Digital Twin Beginnings

"Integrated Computer-Aided building Design Systems"

Dana Vanier Institute for Research in Construction National Research Council of Canada Building M-24 Montreal Road Ottawa,Ontario, Canada K1A OR6

c. 1985

Integrated Computer-Aided Design Time Line						
	1960	1965	1970	1975	1980	
Property Services Agency (PSA) (SEAC)		CEDA	R CEDAR2 (Altas Con	CEDAR3 (Time Sharin	ng) McAuto GDS and BDS	
University of Cambridge Applied Research Cambridge (ARC)	.	0X (0) (At	SYS 3M Xford SYStem) las Computer) OXS (Prim	Building Desig (BDS) YS PT Ge te 300) (Gl	neral Drafting System	
SCOLA						
Liverpool University CAD Centre	Cardiff mining industry (CARBS)		CARBS	Acropolis (Prime,DEC		
Edinburgh Department of Architecture (Ed CAAD)	Scottish S Housing	House Desig Special (LRHD) Authority House	n Design Site Layou	GEM		
University of Stratheclyde Architecture and Building Aid Computer Unit Stratheclyde (ABACUS)	(3511A)	(HD)	(SL) GOAL	PIM BIBLE		
Carnegie-Mellon University Institute of Building Sciences (CMU)		B (E (F	ESP uilding Description Sys 3DS) 2DP 10/11)	stem (GLIDE) (DEC V/	Formative Technologies (FORMTECH) (Three Rivers Computers) (X)	
Corps of Engineers Research Laboratory (CERL)	Computer-Aided Architectural Des	Engineering and ign System		GLIE	DE CH:MODEL	
University of Michigan Dept. of Architecture				ARCH:MODEL (ARCHitecural MC	DDELing)	
Mass. Institute of Technology Architectural Machine Group	(URBAN5)					

The Quest for Digital Twins from the 1970s to today

Digital Twins – Urban Applications

Global Value of Real Estate Assets: CAD \$450 Trillion Significant vulnerabilities

Airline Entertainment Systems – Digital moving maps on a digital globe

The era of "Digital Twins" – digital replicas of real-world objects and places Urban policy & planning often lags other industrial & service sectors

Manufacturing:

- Advanced Simulations + Visualizations
- Integral to DFMA
- Tight connection to complexity models, performance data + outcomes
- Design driven by outcome goals

Urban Design & Planning:

- Gap between s/ware systems & needs of policy-makers
- Significant time lag between key questions and answers
- Limited simulation capabilities accounting for complex systems
- Focus on "what is?" vs "what could be?"

Digital Twins of Urban Regions – Making physical infrastructure models intelligent

Among the most advanced were developed by <u>ETH, Zurich in the late 1990s</u>

Show Ortho Show Neighborhoods Show Stormwater Structures Show Tsunami Evacuation Zones **CC-VisualStar** Neighborhood Stereo measurement CITY HALL **DTM** generation DILLINGHAM Updating HO Quality management KAKAAKO KAPAHULU KAPIO/KINAU/WARD KAPIOLANI

Number of Units

1-100
101-200
201-300

CC-MODELER 3D model generation (using DTM or artificial height as reference) Topological structuring

CC-EDIT Geometry refinement Adding attributes Basement generation Conversion tool

CC-MAPPING

Texture management (roofs/walls)

Terrestrial and aerial images

From 2D maps, street and aerial photographs to 3D Digital Twins

From 2D maps, street and aerial photographs to data-rich 3D Digital Twins

Hollywood – Commercial + Transit routes

Simulating wind flow and turbulence around buildings

Direct and measurable effects on human comfort at street level and on structural design

Los Gatos - 3D Buildings + Current Solar Generation + Solar Potential

Solar Induced Fluorescence Data

Tree canopy, species ID and health of plant life

Visualization portals into digital urban regions

Digital Twins

From What is? To What could be?

Big pictures have small beginnings:

Our professional team is multi-disciplined. We understand how and why detailed human, environmental & economic sub-systems work and interact – start small, identify crucial connections, inspire productive discussions and explore broader questions

ORBIS comprises experienced professionals and collaborations operating globally and in diverse fields

Human settlements – large or small, compact or spread out, have their own DNA signatures

Change attributes of any of its sequences and the region will perform differently as will its physical form and density

Social

Geographic

Physical Infrastructure

Educational

Economic

Natural Environments Mobility

The spatial DNA of cities is measurable; it too drives performance and sustainability

Physical form and density of built environments have profound and lasting effects on social, economic, mobility, and environmental objectives

Governing Dynamics of Urban Regions

Characteristics of sustained livability: Quantifying these starts with the people who live and work in these regions

Any city is a complex interrelated dynamic system

Navigating the future requires persistent instrumentation, insight and communications with diverse constituencies living and working in urban regions

Understanding urban complexities requires diverse professional skills & experience

Assembling the components of an urban observatory

capable of simulating policies for future livability & prosperity

- Baseline City performance
- Policy Scenario testing
 - Risk analysis
 - Socio-economic impacts
 - Environmental challenges
 - Mobility Strategies
 - Water, food & energy security
 - Business/industrial development
 - Housing & schools
- Communications
 - Results
 - Opportunities

City Departments

City Residents, Visitors + Businesses The Observatory amplifies powerful simulation technologies with professional skills & domain experience

This enables us to build & operate urban policy simulations, which account for the highly complex realities of urban regions

Public Health/Informatics

Strategy-Managenent

nalytic

Urban Dynamics

soisAua reguournon,mag avaits

G

Dynamic Digital Twins:

Digital replicas whose future form (their spatial DNA) is driven by simulated and tested social, economic, mobility and environmental policies using dynamic data and AI models of how cities function

The challenge for regional planning remains illuminating actionable urban policy options for driving successful, prosperous futures

Cities, urban professionals, insurers and developers need faster, more immersive analytic and simulation capabilities:

- That can easily be used on a routine basis
- That provide a timely and reliable communications platform for dialogue with diverse constituencies

Making the Future Visible

Sustainability Use Case Example: Air Quality and Mobility Options

Whether included in a hard-copy plan or not, interdependencies among the social, economic, human health, mobility, growth and environmental characteristics of the city remain in play and will likely impact the success of policy decisions constrained to a narrower view

Air Quality is driven by several factors including:

Air Quality – PM₁₀ & PM_{2.5} Harmful inhalable airborne particulates

GOOD	MODERATE	USG*	UNHEALTHY	VERY UNHEALTHY	HAZARDOUS
50	100	150	200	300	

Traffic Intersection PM_{2.5} Particulate Emissions from <u>Tire</u> and <u>Brake</u> Wear – <u>21.7 tons per annum</u>¹

Data from 203 traffic intersection points

City GIS Data

ID	N_S_STREET	E_W_STREET	DATA COLLECTION DAY	EB	WB	NB	SB	TOTAL Vehicles	Total Vehicle miles within a 1 Mile Cell ¹
143	101 FWY	FRANK LLOYD WRIGHT	None	25000	22000	18095	19180	84,274	168,548
140	101 FWY	SHEA	None	21500	31000	13557	17446	83,502	167,004
53	SCOTTSDALE	FRANK LLOYD WRIGHT	Tuesday, March 14, 2023	16990	15359	20604	22472	75,425	150,850
89	HAYDEN	INDIAN SCHOOL	Tuesday, March 14, 2023	21561	20713	16060	16420	74,754	149,508
148	90TH	SHEA	Tuesday, March 14, 2023	31938	29646	10429	2353	74,366	148,732
45	SCOTTSDALE	SHEA	Tuesday, March 14, 2023	17988	17995	18875	17671	72,529	145,058
47	SCOTTSDALE	CACTUS	Tuesday, March 14, 2023	14149	15765	20603	21392	71,909	143,818
56	SCOTTSDALE	101 FREEWAY	None	16744	10636	24500	19500	71,380	142,760
152	92ND	SHEA	Saturday, February 11, 2023	27274	26000	9066	7942	70,282	140,564
98	HAYDEN	SHEA	Tuesday, March 14, 2023	22676	21762	12192	9699	66,329	132,658
\bigtriangledown									
204	117TH	MOUNTAIN VIEW	Thursday, April 13, 2023	1584	802	0	1165	3,551	7,102
113	GRANITE REEF	OSBORN	Thursday, September 14, 2023	1808	736	905	0	3,449	6,898
5	60TH	OAK	Friday, January 13, 2023	1213	1190	0	481	2,884	5,768
187	104TH	SWEETWATER	Friday, January 13, 2023	777	743	556	0	2,076	4,152
			Totals	1,593,368	1,600,828	1,776,399	1,680,526	6,651,114	13,302,228
			Hourly Traffic Flow (vehicles)	66,390	66,701	74,017	70,022	277,130	
			Average Traffic Flow per minute	1,107	1,112	1,234	1,167	4,619	
Daily PM2.5 Tire and Brake Emissions in GRAMS @ 4.05 mg/mile for Passenger Cars			4.05 mg/mile for Passenger Cars	6,453	6,483	7,194	6,806	26,937	53,874
		Daily PM2.5 Tire	and Brake Emissions in POUNDS	14.25	14.31	15.88	15.02	59.46	118.93
		Annual PM2.5 Tir	e and Brake Emissions in pounds	5,200	5,224	5,797	5,484	21,704	43,408
Annual PM2.5 Tire and Brake Emissions in Tons			2.60	2.61	2.90	2.74	10.85	21.70	

Average PM 2.5 and PM10<u>Brake Wear</u> emission rates (mg/vehicle mile) for passenger cars from a national scale run inventory for calendar year 2017 using MOVES3

	PM2.5	PM10
Passenger Cars	2.77	22.1

Average PM 2.5 and (mg/vehicle mile) f scale run inventory MOVES3	l PM10 <u>Tire Wes</u> or passenger ca for calendar yes	r emission rates rs from a national ar 2017 using
	PM2.5	PM10

Passenger Cars	1.28	8.55

References

US EPA-Brake and Tire Wear Emissions from On road Vehicles in MOVES3-November 2020. Assessment and Standards

Division Office of Transportation and Air Quality U.S. Environmental Protection Agency

Visualizing Traffic Intersection Data in 3D (superimposed on digital twin data)

Overlapping vehicle milage cells indicate the high concentration of PM_{10} and $PM_{2.5}$ emissions with spill-over into residential and other areas

PM2.5 induced clinical conditions – analyzing paid insurance claims data:

measuring the incidence of 7 clinical conditions and determining linkages that may exist with the daily and annual PM2.5 emissions from vehicle volumes and tire + brake wear for each highway intersection at the center of a one mile "cell"

Policy levers available for reducing the impact of PM_{2.5} Emissions on human health from high volume road traffic conditions

Improving Air Quality: Likely to increase as vehicle miles driven per day are reduced

Simulate AQ, social, <u>clinical</u> & economic impacts of integrating attainable housing with broader transit choices

Applying an integrated digital model of the City's governing dynamics and fixed infrastructures pointed directly to unmet human wellbeing needs

CMRB & BILD – Speaker Series Event Friday November 24, 2023 Burnswest Theatre, Fort Calgary, Alberta

Digital Twins in Urban and Regional Planning

Phil Allsopp, CEO

www.orbisdynamics.com info@orbisdynamics.com

1959 South Power Road, Suite 103-253, Mesa, Arizona, 85206 (480) 276-7707