Heritage Crossing

Transportation Impact Assessment
Final

Prepared for
2291463 Alberta Ltd.

Date
September 2022

Project Number
02-22-0118

CORPORATE AUTHORIZATION

Prepared By: Leslie Radway, P.Eng.

Transportation Engineer

Reviewed By: Jason Dunn, P.Eng.
Associate

Signed By:
Leslie Radway, P.Eng.
Transportation Engineer

APEGA Permit \#: P13898

Bunt \& Associates Engineering Ltd.

\#113-334 11 Avenue SE
Calgary, AB T2G OY2

Telephone: (403) 252-3343

Date:
2022-08-31
Project \#: 02-22-0118
Status: Final

Engineer's Stamp

This document entitled "Heritage Crossing Transportation Impact Assessment" was prepared by Bunt \& Associates for the benefit of the client to whom it is addressed, in support of their Land Use Redesignation application to Foothills County. The analysis and conclusions/recommendations in the report reflect Bunt \& Associates' best professional judgment in light of the knowledge and information available to Bunt \& Associates at the time of preparation.

Foothills County shall be entitled to rely on this report for the specific purpose for which it was prepared. Foothills County may provide copies of the report to Foothills County Council, Foothills County Employees, and Foothills County Regulatory Boards, each of whom shall also be entitled to rely on this report in their official capacities for the specific purpose for which the report was prepared. Foothills County may also provide copies of the report to external governmental bodies having jurisdiction related to the project for which it was prepared.

Any use made of this report by a third party beyond those specifically noted here, or any reliance on or decisions based on it by any such third party, are the responsibility of such third parties. Bunt \& Associates accepts no responsibility for damages, if any, suffered by such third parties as a result of decisions made or actions based on this report.

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY 1
1.1 Trip Generation 1
1.2 Findings \& Recommendations 1
2. INTRODUCTION 3
2.1 Scope of Work 3
2.2 Site Context 3
2.3 Additional Background Information 3
3. DEVELOPMENT 6
3.1 Densities 6
3.2 Trip Generation 7
3.3 Trip Distribution 7
3.4 Access 7
4. TRAFFIC CONDITIONS 10
4.1 Road Network 10
4.2 Intersections 10
4.3 Sight Distance 10
4.4 Volumes 10
4.4.1 Existing 10
4.4.2 Future Background Traffic 11
4.4.3 After Development 12
4.5 Intersection Analysis 19
4.5.1 Background Analysis 20
4.5.2 After Development 22
4.6 Roadway Classification. 23
4.7 Warrants 24
4.7.1 Intersection Turn Warrants 24
4.7.2 Illumination Warrant. 26
APPENDIX A Scope of Work 1
APPENDIX B Traffic Data 2
APPENDIX C Synchro Reports 3
APPENDIX D Warrants 4
EXHIBITS
Exhibit 3.1: Site Traffic Distribution 8
Exhibit 3.2: Site Traffic Volumes 9
Exhibit 4.1: Existing Intersection Configurations 13

[^0]Exhibit 4.2: Existing Traffic Volumes 14
Exhibit 4.3: Opening Day Background Traffic Volumes 15
Exhibit 4.4: Long Term Background Traffic Volumes 16
Exhibit 4.5: Opening Day After Development Traffic Volumes 17
Exhibit 4.6: Long Term After Development Traffic Volumes 18
FIGURES
Figure 2.1: Site Context 5
Figure 3.1: Site Plan 6
TABLES
Table 1.1: Trip Generation 1
Table 1.2: Findings \& Recommendations 2
Table 3.1: Proposed Densities 7
Table 3.2: Trip Generation Rates 7
Table 3.3: Vehicle Trip Generation 7
Table 4.1: Existing Roadway Characteristics 10
Table 4.2: Data Collection Summary 11
Table 4.3: Existing Intersection Analysis 20
Table 4.4: Opening Day Background Intersection Analysis 20
Table 4.5: Opening Day Background Intersection Analysis - Revised Layout 21
Table 4.6: 10-Year Background Intersection Analysis 21
Table 4.7: 25-Year Background Intersection Analysis 21
Table 4.8: Opening Day After Development Intersection Analysis 22
Table 4.9: 10-Year After Development Intersection Analysis 23
Table 4.10: 25-Year After Development Intersection Analysis 23
Table 4.11: Daily Volume Analysis - 25 Year Long Term Horizon 23
Table 4.12: Illumination Warrant Summary 26

1. EXECUTIVE SUMMARY

2291463 Alberta Ltd. is seeking a land use redesignation for a site located in the southeast quadrant of 2 Street E \& Dunbow Road. The proposed development will include a total of approximately 153 residential units.

Foothills County requested a Transportation Impact Assessment (TIA) to review the traffic impacts of the proposed development. Findings and recommendations are summarized below.

1.1 Trip Generation

Proposed development densities, phasing, and forecasted trip generation is summarized in Table 1.1.

Table 1.1: Trip Generation

HORIZON	USE	DENSITY		$\begin{aligned} & \text { TOTAL TRIP } \\ & \text { GENERATION } \end{aligned}$	
$\begin{aligned} & \text { Opening Day } \\ & \text { (2024) } \end{aligned}$	25\% of Full Build Out			25	35
	TOTAL				
Long Term (10 and 25 Years)	Single Family	89		62	89
	Duplex	44		31	44
	Seniors Housing	20		5	6
			TOTAL	98	139

1.2 Findings \& Recommendations

Study findings and recommendations are described in Table 1.2.

Table 1.2: Findings \& Recommendations

SECTION		FINDINGS
Sight Distance		Study area intersections meet minimum sight distance requirements.
Intersection Analysis	Background	The southbound to eastbound left turn at 2 Street $E /$ Dunbow Road currently operates at capacity during the weekday PM peak hour. It is recommended that the County consider accelerating their planned re-alignment of Heritage Lake Road to limit the north leg of the intersection to Fire Station access. With this improvement in place, the intersections will operate within acceptable capacity parameters under both Existing and Opening Day conditions as well as at the 10 Year Horizon. The anticipated County improvements to widen Dunbow Road to 4lanes and the implementation of signalization or a roundabout at 2 Street E will adequately accommodate 25 Year Horizon conditions.
	After Development	No further improvements beyond those identified for Background Traffic accommodation will be required to adequately accommodate site generated traffic.
Roadway Analysis	Background	With the inclusion of planned improvements implemented by the County, all roadways will accommodate future background traffic.
	After Development	The addition of site traffic will not affect the classification, cross section or surface treatment of Dunbow Road. The addition of site traffic results in the need to upgrade 2 Street from Dunbow Road to the south access to a 9 metre paved surface.
Warrants	AT intersection	The Dunbow Road/2 Street E intersection will require a Type IVb to accommodate the traffic at the 10 Year Full Development Horizon. The closure of the north leg to all but Fire Station traffic and the addition of the balance of the site generated traffic result in the need for a modification to the Type IVb configuration to create a mirror image but with the current EBLT lane replaced with a WBLT lane. The anticipated County improvements to widen Dunbow Road to 4lanes and the implementation of either signalization or a roundabout at 2 Street E will adequately accommodate 25 Year Horizon conditions.
	Illumination	Delineation illumination is currently provided at the Dunbow Road/2 Street E intersection. This level of illumination will continue to be satisfactory at the Opening Day and 10 Year Horizon. The anticipated County improvements to widen Dunbow Road to 4lanes and the implementation of either signalization or a roundabout at 2 Street E will result in requisite upgrades to intersection lighting.

2. INTRODUCTION

2.1 Scope of Work

Based on discussions with the Foothill County (Appendix A), the scope of work for this study was confirmed to include the following:

Development Trip Generation

- Trip Generation - Calculate development trips based on industry standards (ITE Trip Generation).
- Trip Assignment - Assign development trips to the network based on existing travel patterns.

Traffic

- Horizons - Review traffic conditions for:
- Existing
- Opening Day (2024)
- Long Term (10-Year, 25-Year)
- Intersection Capacity - Complete weekday peak hour analysis at:
- 2 Street E \& Dunbow Road
- 2 Street E \& Access Locations (only at 25-Year Horizon)
- Recommendations - Identify improvements required to support background or development traffic.

Roadway Characteristics

- Establish road surface and cross-sections for all horizons
- Review Illumination Warrant for the intersection of 2 Street E at Dunbow Road

2.2 Site Context

The site is located in Foothills County and is bounded by Dunbow Road to the north and 2 Street E to the west. The site context is illustrated in Figure 2.1.

2.3 Additional Background Information

In March 2022, Watt Consulting Group (Watt) completed a functional study for Dunbow Road between Deerfoot Trail and Macleod Trail'. The study included the assumed development of 800 new residential units within this stretch of road and provided an access management plan for Dunbow Road. The access management plan provided potential staging plans and timing of improvements along Dunbow Road and identified intersection control options as roundabouts and also as signalized intersections. This study was

[^1]approved by Foothills County in June 2022, but without a decision regarding the type of intersection control to be implemented.

The next steps for the County would be to present the report as part of public consultation component. The Country would then decide whether to proceed with the signalization or roundabout options. Both of these two options were therefore assumed to be in place at the 25 Year Horizon and both were assessed in this study.

The County also indicated that the priority would be to go forward with improvements on the west end of Dunbow Road, which would include 2 Street E. These improvements would see Heritage Lake Road (located between Macleod Trail and 2 Street E) extended south to connect directly to Dunbow Road. In conjunction with the new connection, the north leg of the 2 Street E at Dunbow Road intersection would be limited to access for the Heritage Pointe Fire Station. The timing of this improvement was not specified by the County, but it was assumed for the purpose of this TIA to be in place by the 10-Year Horizon.

It is understood that at some point in the future that the north leg of 2 Street E may provide access for additional residential development and that this would be addressed as part of that future development. It was therefore beyond the scope of this study.

In summary, then, the network assumptions utilized in this study assumed the following:

- Opening Day: Network as per existing.
- 10 Year Horizon: Heritage Lake Road re-aligned, with the north leg of 2 Street E closed to traffic other than the Fire Station.
- 25 Year Horizon: Signalization or roundabout at the Dunbow Road/2 Street E intersection, and the widening of Dunbow Road to 4-lanes.

It is noted that the scope of the Watt functional study of Dunbow Road contained forecasts for both the 10 and 25 Year Horizons. However, those forecasts were limited to the PM peak hour. As such, the analysis of the 10 and 25 Year Horizons in this TIA were also limited to the PM peak hour.

Exhibit 2.1

Site Context

3. DEVELOPMENT

The site plan is illustrated in Figure 3.1.

Figure 3.1: Site Plan

3.1 Densities

Proposed development uses, phasing, and densities are summarized in Table 3.1.

Table 3.1: Proposed Densities

HORIZON	LAND USE	DENSITY
Opening Day (2024)	Residential	25% of development
Long Term (10 and $25-$-Years)	Single Family Residential	89 units
	Duplex Residential	44 units
	Seniors (detached) Residential	20 units

3.2 Trip Generation

The approved trip generation rates used in this analysis are summarized in Table 3.2. The trip generation rates are based on the Institute of Transportation Engineers (ITE) Trip Generation Manual (10th Edition) and industry standards.

Table 3.2: Trip Generation Rates

USE	AM PEAK HOUR				PM PEAK HOUR		DATA
	Trip Rate	Out	Trip Rate	In	Out	SOURCE	
Single family / Duplex Residential	0.7 per unit	20%	80%	1.0 per unit	66%	34%	Industry Standards
Seniors (detached) Residential	0.24 per unit	33%	67%	0.30 per unit	61%	39%	ITE 251

The expected full build-out development generated trips are summarized in Table 3.3. For the purpose of analysis, it was assumed that full build out would occur by the 10 Year Horizon, with 25% of that in place by Opening Day in 2024.

Table 3.3: Vehicle Trip Generation

HORIZON	USE	DENSITY	AM PEAK HOUR			PM PEAK HOUR		
			Total	In	Out	Total	In	Out
Build Out	Single Family	89 units	62	12	50	89	59	30
	Duplex	44 units	31	6	25	44	29	15
	Seniors	20 units	5	2	3	6	4	2
		TOTAL	98	20	78	139	91	48

3.3 Trip Distribution

Vehicle trips were distributed based on existing traffic patterns as observed by Bunt during traffic counts undertaken in 2022. The trip distribution used in this study is illustrated in Exhibit 3.1.

3.4 Access

Access to the development will be provided from 2 Street E. All vehicle trips were assigned to the two access points.

The resulting development generated traffic volumes are illustrated in Exhibit 3.2 \& Exhibit 3.3 for the Opening Day and Long-Term 10/25 Year horizons, respectably.

Exhibit 3.1
Site Traffic Distribution

Exhibit 3.2
Opening Day Site Traffic Volumes

Exhibit 3.3
Full Build Out Site Traffic Volumes

4. TRAFFIC CONDITIONS

4.1 Road Network

The characteristics of roadways near the site are summarized in Table 4.1

Table 4.1: Existing Roadway Characteristics

ROADWAY	CLASSIFICATION	CROSS-SECTION		POSTED	FACILITIES	
		\# Lanes	Median	SPEED	Shoulder	Illumination
Dunbow Road		2	No	$80 \mathrm{~km} / \mathrm{h}$	Yes	No
2 Street E	Major Collector	2	No	$50 \mathrm{~km} / \mathrm{h}$	Yes	

4.2 Intersections

Existing intersection configurations and controls at study intersections are illustrated in Exhibit 4.1.

4.3 Sight Distance

A sight distance review was undertaken for the proposed development access intersections along 2 Street E based on Table 7 of Foothills County's Rural Approach Standards Policy ${ }^{2}$. The minimum sight distance for a road with a posted speed of $50 \mathrm{~km} / \mathrm{h}$ is 90 metres. The sight distance for both accesses was found to exceed 90 metres. As such, minimum requirements will be met.

4.4 Volumes

4.4.1 Existing

Traffic counts at Dunbow Road/2 Street E used in this study are summarized in Table 4.2. The original count completed by Bunt on June 30, 2022 was compared to a Watt count completed on July 19, 2019. Most of the observed 2022 traffic volumes aligned with the 2019 Watt count, as expected, except for the westbound through (WBT) movement, which was 700 vehicles per hour (vph) higher in 2022 than had been observed in 2019. This was felt to be a possible outlier, and so additional counts were completed by Bunt on July 11 (spot count) and July 21 (full two-hour count), 2022 to validate the data set. These also found the WBT to be considerably higher than the 2019 volumes, and although substantial, the repeated appearance of a significant variance confirmed the appropriateness of the volume. To this end, the resulting WBT peak volumes was assessed as and utilized as 560 vph.

During the spot count on July $11^{\text {th }}$, observations were also made with respect to local travel patterns. Regional traffic from southbound Deerfoot Trail appeared to be using Dunbow Road as a route to access the communities of Legacy and Walden located north of the study area on Macleod Trail (no access to Legacy or Walden is available directly from Deerfoot Trail). Although not specifically confirmed through full trip traces, vehicles appeared to travel southbound on Deerfoot Trail, then west along Dunbow Road and then north on Highway 2A / Macleod Trail to then turn right onto 210 Avenue SE to access Legacy and Walden.

[^2]While this was a high-level observation (no specific data collected) a cursory review of expected travel times on Google Maps for this alternative regional route was completed in conjunction with the observations. This confirmed that Google Maps directions recommend this route as it seems to provide a more consistent and/or shorter travel time than the Stoney Trail to Macleod Trail/2A via Highway 22X route during the PM peak hour. It is expected that the number of drivers utilizing this alternative route would vary based on the prevalence of construction and/or crashes along Stoney Trail. In time, as more development occurs along Dunbow Road with increased intersection control (signals or roundabouts), this route will may become less attractive to this through traffic, which could reduce the WBT volumes on this road. However, for the purpose of analysis they were assumed to remain.

Interestingly, a comparison of Alberta Transportation (AT) 2019 and 2020 traffic counts ($100^{\text {th }}$ Highest Hour) along Dunbow Road at Macleod Trail and Deerfoot Trail did not appear to reflect the same increase in traffic. It is therefore postulated that the use of this route may have increased as more of Legacy and Walden has developed and/or that construction activity may have been more prevalent in 2022 than had been the case in 2019 or 2020. Regardless, the higher traffic volumes as counted by Bunt in 2022 were used in this study and are summarized in Table 4.2. Traffic count data is included in Appendix B.

Table 4.2: Data Collection Summary

INTERSECTION	COUNT DATE	DAY OF WEEK	SOURCE
2 Street SE \& Dunbow Road	$2022 / 06 / 30$	Thursday	Bunt \& Associates
2 Street SE \& Dunbow Road	$2022 / 07 / 21$	Thursday	Bunt \& Associates

4.4.2 Future Background Traffic

Future background traffic is traffic that would be present on the road network in future years due to ambient growth regardless of the development of the site. This traffic is representative of yearly growth on the roadways as well as other residential, commercial, or industrial developments that have been approved in the area.

The background volumes for the $10-Y e a r$ and 25 -Year Horizons were obtained from the approved Watt functional study of Dunbow Road. The Watt study included 800 new residential units in the vicinity of Dunbow Road (400 north of Dunbow Road and 400 to the south). While the County indicated that residential units in the subject site could be assumed as part of the 400 units, a more conservative approach of layering the site traffic due to the Heritage Crossing development was assumed to be adequate for the purpose of this analysis.

For the Opening Day (2024) a nominal 2% growth rate was applied to the east and westbound through movements along Dunbow Road.

Background traffic volumes used in the analysis are illustrated in Exhibit 4.3 (Opening Day) and Exhibit 4.4 (Long Term 10 and 25 Year) Horizons.

4.4.3 After Development

Development generated traffic volumes (Exhibit 3.2) were added to Background traffic volumes to develop After Development traffic volumes as illustrated in Exhibit 4.5 (Opening Day) and Exhibit 4.6 (Long Term 10 and 25 Year) Horizons.

Exhibit 4.1

Existing Intesection Configurations

Exhibit 4.2

Existing Traffic Volumes

Exhibit 4.3
Opening Day Background Volumes

Exhibit 4.4
Long Term Background Volumes

Exhibit 4.5
Opening Day After Development Traffic Volumes

Exhibit 4.6
Long Term After Development Traffic Volumes

4.5 Intersection Analysis

Synchro 9.2 traffic analysis software was used to review intersection operational conditions based on the methods outlined in the Highway Capacity Manual 2000. Traffic operations were assessed using the performance measures of volume-to-capacity (v/c) and Level of Service (LOS).

The volume-to-capacity (v / c) ratio of an intersection movement represents the ratio between the demand volume and available capacity. AT guidelines accept a v/c ratio of 0.85 or less. The Level of Service (LOS) rating is based on average vehicle delays ranging from LOS A (minimal delay) to LOS F (significant delay). AT guidelines accept an overall LOS C at highway access intersections with a LOS D on any single approach at full-build out.

Sidra 9.0 traffic analysis software was used to review roundabout intersection operational conditions based on the methods outlined in the Highway Capacity Manual. Traffic operations were assessed using the performance measures of volume-to-capacity (v/c) and Level of Service (LOS).

The volume-to-capacity (v / c) ratio of an intersection represents the ratio between the demand volume and available capacity. A v/c ratio 0.90 or less is acceptable and represents optimized conditions. The Level of Service (LOS) rating is based on average vehicle delays ranging from LOS A (minimal delay) to LOS F (significant delay).

Intersection capacity analysis was completed for the following scenarios:

- Background
- Existing
- Opening Day (2024)
- 10 Year Horizon
- 25 Year Horizon
- After Development
- Opening Day (2024)
- 10 Year Horizon
- 25 Year Horizon

The analysis is completed as per Alberta Transportation TIA guidelines with a saturation flow rate of 1900 vehicles per hour and a peak hour factor of 0.92 . The analysis uses a minimum hourly volume of 5 vehicles per movement for the Long Term horizon. The volume to capacity (v/c) ratio, level of service, average control delay (in seconds), and $95^{\text {th }}$ percentile queue (in metres) are summarized in this report. Synchro output reports are provided in Appendix C.

As noted earlier, the network assumptions used in the base analysis included the following:

- Opening Day: Network as per existing.
- 10 Year Horizon: Heritage Lake Road re-aligned, with the north leg of 2 Street E closed to traffic other than the Fire Station.
- 25 Year Horizon: Signalization or roundabout at the Dunbow Road/2 Street intersection, and the widening of Dunbow Road to four core lanes.

4.5.1 Background Analysis

Existing and Opening Day Background Conditions

Existing intersection analysis is summarized in Table 4.3 based on the intersection configurations illustrated in Exhibit 4.1 and volumes illustrated in Exhibit 4.2.

Table 4.3: Existing Intersection Analysis

INTERSECTION	MOVEMENT \& LANES		AM PEAK HOUR				PM PEAK HOUR			
			v/c	LOS	Delay	Queue	v/c	LOS	Delay	Queue
 Dunbow Road (N/S Stop Control)	EBL	1	0.06	A	8.1	<5	0.18	B	10.2	6
	EBTR	1	0.08	A	0.0	<5	0.12	A	0.0	<5
	WBLT	1	<0.02	A	0.1	<5	<0.02	A	0.0	<5
	WBR	1	0.04	A	0.0	<5	0.10	A	0.0	<5
	NB	1	<0.02	B	11.3	<5	<0.02	C	17.4	<5
	SBLT	1	0.21	B	14.8	7	0.85	F	93.6	46
	SBR	1	0.03	A	9.6	<5	0.12	B	13.5	<5
	Overall		-	A	3.7	-	-	B	11.1	-

Opening Day Background intersection analysis is summarized in Table 4.4 based on the volumes illustrated in Exhibit 4.3 and the existing intersection layout.

Table 4.4: Opening Day Background Intersection Analysis

INTERSECTION	MOVEMENT \& LANES		AM PEAK HOUR				PM PEAK HOUR			
			v/c	LOS	Delay	Queue	v/c	LOS	Delay	Queue
2 Street E \& Dunbow Road (N/S Stop Control)	EBL	1	0.06	A	8.1	<5	0.18	B	10.3	6
	EBTR	1	0.08	A	0.0	<5	0.13	A	0.0	<5
	WBLT	1	<0.02	A	0.1	<5	<0.02	A	0.0	<5
	WBR	1	0.04	A	0.0	<5	0.10	A	0.0	<5
	NB	1	<0.02	B	11.4	<5	<0.02	C	18.1	<5
	SBLT	1	0.21	C	15.1	7	0.90	F	109.2	50
	SBR	1	0.03	A	9.7	<5	0.12	B	13.8	<5
	Overall		-	A	3.7	-	-	B	12.4	-

The Existing and Opening Day analysis showed the southbound left turn (SBLT) movement to operate at capacity without consideration of site generated traffic. This suggests that the County may wish to accelerate the improvement to re-align Heritage Lake Road and to limit the north leg of 2 Street E to Fire Station Access.

Additional analysis was then completed with the north leg of the Dunbow Road/2 Street E intersection being only used by the Fire Hall, essentially revising the intersection (operationally) to a T-intersection as outlined in the approved Watt study. It was assumed that this improvement would be completed in conjunction with the re-alignment of Heritage Lake Drive to Dunbow Road.

Table 4.5: Opening Day Background Intersection Analysis - Revised Layout

INTERSECTION	MOVEMENT \& LANES		AM PEAK HOUR				PM PEAK HOUR			
			v/c	LOS	Delay	Queue	v/c	LOS	Delay	Queue
2 Street E \&	EB	1	0.14	A	0.0	<5	0.20	A	0.0	<5
Dunbow Road	WB	1	<0.02	A	0.0	<5	<0.02	A	0.0	<5
(NB Stop Control)	NB	1	<0.02	B	0.1	<5	<0.02	C	16.0	<5
	Overall		-	A	0.1	-	-	A	0.1	-

The results of this improved condition are summarized in Table 4.5. It can be seen that the issue related to the SBLT is resolved with the intersection improvement. It is therefore recommended that the County consider accelerating this improvement with or without consideration of the site that is the subject of this study.

Long Term Background Conditions

Long Term Background intersection analysis is summarized in Table 4.6 based on the volumes illustrated in Exhibit 4.4. for the 10 and 25 Year horizons, respectively.

As noted earlier, the 10 Year Horizon assumed the re-alignment of Heritage Lake Road to be in place, with the north leg of 2 Street SE used only by the Fire Hall; and the 25 Year Horizon further assumed 4-lanes on Dunbow Road as well as the inclusion of signalization or a roundabout at the 2 Street E intersection.

Table 4.6: 10-Year Background Intersection Analysis

INTERSECTION	MOVEMENT			PM PEAK HOUR			
	$\&$ LANES						

Table 4.7: 25-Year Background Intersection Analysis

\left.| INTERSECTION | MOVEMENT | | | PM PEAK HOUR | | | |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | :---: |
| | \& LANES | | | | | | |$\right)$

The results of the Long Term Horizon analysis at the 10 and 25 Year Horizons confirmed that with the inclusion of the improvements noted, the study area intersection would be expected to continue to operate within acceptable capacity parameters, and that It would do as either a signalized intersection or a roundabout.

4.5.2 After Development

Opening Day

Opening Day After Development intersection analysis is summarized in Table 4.8 based on the volumes illustrated in Exhibit 4.5. It is noted that the site access locations have only been analyzed as part of the full build-out scenario at the 25 -Year horizon as approved by the County.

Table 4.8: Opening Day After Development Intersection Analysis

INTERSECTION	MOVEMENT \& LANES		AM PEAK HOUR				PM PEAK HOUR			
			v/c	LOS	Delay	Queue	v/c	LOS	Delay	Queue
 Dunbow Road (N/S Stop Control)	EBL	1	0.06	A	8.1	<5	0.18	B	10.3	6
	EBTR	1	0.08	A	0.0	<5	0.13	A	0.0	<5
	WBLT	1	<0.02	A	0.2	<5	<0.02	A	0.3	<5
	WBR	1	0.04	A	0.0	<5	0.10	A	0.0	<5
	NB	1	0.03	B	10.3	<5	0.06	C	20.5	<5
	SBLT	1	0.23	C	15.8	7	0.98	F	134.4	55
	SBR	1	0.03	A	9.7	<5	0.12	B	13.8	<5
	Overall		-	A	4.0	-	-	B	14.8	-
 Dunbow Road (Improved Intersection; NB Stop Control)	EB	1	0.14	A	0.0	<5	0.21	A	0.0	<5
	WB	1	<0.02	A	0.2	<5	<0.02	A	0.0	<5
	NB	1	0.04	B	10.5	<5	0.05	C	15.8	<5
	Overall		-	A	0.5	-	-	A	0.5	-

The results of this analysis confirmed that the addition of the Opening Day site traffic on the existing road network does not have a significant effect on the capacity results. The intersection of Dunbow Road/2 Street E operates in a manner similar to what would be the case without consideration of site traffic. The analysis also showed that with the recommended improvement identified in the Background analysis to accelerate the re-alignment of Heritage Lake Road and to limit the north leg of 2 Street E to Fire Station Access, the intersection would then operate well within acceptable capacity parameters.

Long Term

Long Term After Development intersection analysis is summarized in Table 4.9 \& Table 4.10 based on the volumes illustrated in Exhibit 4.6.

Table 4.9: 10-Year After Development Intersection Analysis

INTERSECTION	MOVEMENT \& LANES		PM PEAK HOUR			
			v/c	LOS	Delay	Queue
2 Street E \& Dunbow Road (N/S Stop Control)	EB	1	0.26	A	0.0	<5
	WB	1	0.06	A	1.6	<5
	NB	1	0.26	C	22.9	8
	Over		-	A	2.6	

Table 4.10: 25-Year After Development Intersection Analysis

INTERSECTION	MOVEMENT \& LANES		PM PEAK HOUR			
			v/c	LOS	Delay	Queue
2 Street E \& Dunbow Road (Signalized)	EB	2	0.37	A	4.6	28
	WB	2	0.60	A	7.0	51
	NB	1	0.34	B	18.3	20
	Overall		-	A	6.6	-
2 Street E \& Dunbow Road (Roundabout)	EB	2	0.32	A	5.8	13
	WB	2	0.49	A	7.9	26
	NB	1	0.14	A	7.3	5
	Overall		-	A	7.1	-
2 Street E \& Access 1 (WB Stop Control)	WB	1	0.02	A	8.9	<5
	NB	1	0.05	A	0.0	<5
	SB	1	0.02	A	1.9	<5
	Overall		-	A	1.7	-
2 Street E \& Access 2 (WB Stop Control)	WB	1	0.03	A	8.8	<5
	NB	1	0.03	A	0.0	<5
	SB	1	0.04	A	4.2	<5
	Overall		-	A	3.8	-

The results of the Long Term analysis show the study intersections to operate well within acceptable capacity parameters with the assumed Background network improvements in place along Dunbow Road.

4.6 Roadway Classification

To review roadway classifications and capacities, daily vehicle traffic volumes were calculated and compared to available environmental guidelines. Environmental guidelines represent the desired daily volume range for a roadway, whereas the actual physical capacity can be higher.

Background daily volumes were determined by applying a standard factor of 10 to observed or forecast PM peak hour volumes. The resulting daily volume analysis is summarized in Table 4.11.

Table 4.11: Daily Volume Analysis - 25 Year Long Term Horizon

ROADWAY	EXISTING		LONG TERM (25 YEAR)	
	CLASSIFICATION	DAILY VOLUME	CLASSIFICATION	DAILY VOLUME
Dunbow Road	Major Collector	$10,000 \mathrm{vpd}$	Major Collector	18,000 to $19,000 \mathrm{vpd}$
2 Street E	Hamlet Road	100 vpd	Foothills Standard	2,000 to $2,500 \mathrm{vpd}$

Dunbow Road is classified as Major Collector as per the approved Watt study. It is assumed that as part of the upgrade to 4 lanes at the 25 Year horizon, the road structure will be built to accommodate the expected daily traffic. The additional daily traffic due the proposed development is expected to increase the overall daily volume by approximately 1000 vehicles per day (vpd) which does not change the requirements associated with Dunbow Road.

Based on discussions with the County, 2 Street is currently classified as a Hamlet Standard Road under current Foothills guidelines but with a larger right-of-way (ROW) of 30 metres. The Hamlet Road standard includes 7.0 metres of pavement, 8.8 metre subgrade and 20 metre ROW. By comparison, on-site measurements by Bunt confirmed that 2 Street E currently provides approximately 7.7 to 8.25 metres of pavement with 8.5 to 9.3 metres of subgrade within a 30 metre ROW within the vicinity of the site.

Based on discussions with Foothills, the threshold for upgrading a Hamlet Road such as 2 Street E is 750 VPD. At this threshold the requirement calls for an upgrade to a 9.0 metre paved surface with approximately 10.8 metre of subgrade within a 30 metre ROW.

The Opening Day daily volumes forecast on 2 Street E are expected to be less than 500 vpd and therefore 2 Street E will not be required to be upgraded for Opening Day. The upgrade to the full Foothills Standard noted above (9.0 metre pavement on a 10.8 metre subgrade) will be required to be in place prior to full build out of the site once daily volumes exceed 750 vpd . This will need to be monitored as part of development applications beyond Opening Day. This upgrade will extend from the south site access north to Dunbow Road.

4.7 Warrants

4.7.1 Intersection Turn Warrants

The intersection of Dunbow Road/2 Street E was assessed for Opening Day and 10 Year Horizon conditions, given that the 25 Year Horizon was assumed to see the intersection operating as a signalized intersection or roundabout per the Watt study for Dunbow Road.

Intersection type warrants were performed at 2 Street E for the Opening Day and 10-Year horizons.
All analyses followed the process outlined in the AT Highway Geometric Design Guide.
The AT intersection warrant analysis is used at unsignalized at-grade intersections to determine if a left turn is required to eliminate interference caused by standing vehicles waiting to turn or a right turn lane is required to reduce obstruction to through movements. Alberta Transportation intersection turning warrants are included in Appendix D.

Right Turn Warrants

The AT exclusive right turn lane warrant for a two-lane undivided highway states that three separate conditions should generally be met in order to warrant the need for such a lane. These criteria are:

- Average Annual Daily Traffic (AADT) volumes on the main road are greater than or equal to 1,800 vehicles per day (vpd);
- The intersected road exhibits daily traffic volumes greater than or equal to 900 vpd ; and
- The right turn movement in question is greater than or equal to 360 vpd.

Left Turn Warrants

According to AT guidelines, the following two conditions should generally be met to warrant the need to construct an exclusive left turn taper and/or by-pass through lane on a two-lane highway:

- The peak hour opposing traffic volumes are greater than or equal to 100 vpd ; and
- A minimum of five percent of advancing traffic is left turning during the peak hour periods.

Today the intersection of 2 Street E and Dunbow Road operates as a modified Type IVb intersection per AT guidelines with a separate eastbound left turn lane, plus a westbound right turn lane and acceleration lanes for the southbound right and left movements. This lane configuration was assumed to remain for the Opening Day horizon.

At the 10 Year horizon assumed that the improvements to Dunbow Road as outline in the Watt study are in place.

AT intersection turn warrants confirmed the following:

- Existing and Opening Day Background: The existing Type IVb intersection configuration satisfies the warrant requirements.
- Opening Day After Development: This was found to be unaffected by the addition of site generated traffic. The exiting modified Type IVb continues to be sufficient.
- 10 Year Horizon, Background: Assuming the inclusion of the re-alignment of Heritage Lake Road and the closure of 2 street E north of Dunbow Road to all but fire station traffic, the intersection would continue to be adequately serviced as a Type IVb.
- 10 Year Horizon, Full Development: The closure of the north leg to all but Fire Station traffic and the addition of the balance of the site generated traffic result in the need for a modification to the Type IVb configuration to create a mirror image but with the current EBLT lane replaced with a WBLT lane.

The standard AT drawing showing a typical Type IVb intersection are contained in Appendix D.
The issue at this location is the overlapping impacts of the growth in Background traffic on Dunbow Road, the planned re-alignment of Heritage Lake Road and the corresponding closure of 2 Street E north of Dunbow to all but Fire Station Traffic, and the new traffic added by the subject site. Once the re-alignment is complete, the needs at the Dunbow Road/2 Street E intersection change, ultimately requiring the current eastbound left turn lane to be replaced with a westbound left turn lane. A cursory review of the intersection suggests that there is sufficient pavement width in the vicinity of the intersection to mirror image the geometry to accommodate the 10-Year Horizon with full development of the subject site. It is also noted that this would be an interim improvement that would be in place only until Dunbow Road is upgraded to 4-lanes and the intersection either signalized or replaced with a roundabout. The intersection of Dunbow Road/4 Street E will need to be considered when developing the westbound left turn taper,
with the understanding that the Watt study has proposed a right in / right out at this location in the future. Today, the existing eastbound right lane essentially begins at this intersection.

4.7.2 Illumination Warrant

An illumination warrant was completed at the Dunbow Road/2 Street E intersection based on the Transportation Association of Canada (TAC) Illumination of Isolated Rural Intersections guide. The warrant for illumination is used to determine if lighting at an intersection is required based on several different factors such as geometrics, operations, environmental issues, and collision history.

Currently the 2 Street E/Dunbow Road intersection is currently illuminated with delineation lighting. As such, the warrant was completed to determine whether interim upgrades to this lighting would be required prior to the intersection being ultimately signalized or developed as a roundabout. In the case of signalization or a roundabout, full illumination would be included as part of the upgrade as a matter of course.

TAC guidelines state full illumination is warranted at unsignalized intersections where a total score of 240 or more points is achieved. Partial or delineation lighting may be considered at intersections with a score of 120 points or more (partial illumination if $80 / 120$ points achieved in Geometric score; delineation lighting if 120+ points achieved overall).

The illumination warrant results are summarized in Table 4.12 and are attached in Appendix D.

Table 4.12: Illumination Warrant Summary

INTERSECTION	HORIZON	ILLUMINATION SCORE	COMMENT
 Dunbow Road	Opening Day Background	161	Delineation Lighting Warranted
	Opening Day	161	Delineation Lighting Warranted
	10 Year Background	81	Not warranted
	10 Year	141	Delineation Lighting Warranted

The illumination warrant review indicates that delineation lighting is warranted at the Opening Day and 10 Year horizon, which is currently in place today. The 10 Year background was not warranted due shift of traffic on the north leg to Heritage Lake Drive, which was the driving factor for the warrant being met. It is noted that no crash data was available for this location, nor was it highlighted as an issue by Foothills. A sensitivity analysis was undertaken to understand how many nighttime crashes per year would have to occur to warrant full lighting. If 3 or more nighttime crashes occurred per year full lighting would be required.

Since the development of the subject site will not materially affect the warrant for illumination at this intersection, the current delineation lighting is adequate to accommodate the interim condition until such time as the intersection is upgraded to a signal or a roundabout. Note that if crash conditions result in sufficient crashes to warrant additional illumination, then the County may wish to upgrade the illumination, with or without consideration of site generated traffic.

APPENDIX A
 Scope of Work

From:	Leslie Radway
Sent:	Tuesday, June 14, 2022 4:38 PM
To:	Jeff Edgington
Subject:	Re: Heritage Crossing - TIA Scope

Great. Thanks!

From: Jeff Edgington Jeff.Edgington@FoothillsCountyAB.ca
Sent: Tuesday, June 14, 2022 4:32 PM
To: Leslie Radway Iradway@bunteng.com
Subject: RE: Heritage Crossing - TIA Scope

Seems correct .

From: Leslie Radway [|radway@bunteng.com](mailto:%7Cradway@bunteng.com)
Sent: June 14, 2022 4:18 PM
To: Jeff Edgington Jeff.Edgington@FoothillsCountyAB.ca
Subject: Heritage Crossing - TIA Scope

You don't often get email from Iradway@bunteng.com. Learn why this is important
Hi Jeff - Following up from our conversation this morning. Based on our discussion, I have put together what I see the as the main analysis points in the TIA.

- Opening Day + Site based on the existing network to check whether we need to upgrade anything at the intersection of $2^{\text {nd }}$ Street / Dunbow Road today.
- Opening Day, 10 Year and 25 Year daily volume check on $2^{\text {nd }}$ Street using Watt's numbers plus our site to see if we need to upgrade the road now, or in 10 years, or at 25 years.
- 25 Years + Site on the Watt long term network to check whether or not the $2^{\text {nd }}$ Street intersection is materially affected.
- Review access intersections along $2^{\text {nd }}$ Street at the 25 year horizon. Volumes will be provided at these access intersections for all horizons, but since there is very little traffic on $2^{\text {nd }}$ Street south of Dunbow, if they operate at 25 -year, they will operate at the other horizons.
- Review of the cross-section of $2^{\text {nd }}$ Street (south of Dunbow Road) and recommend required improvements.

Adding all of our site traffic to the long term, maybe double counting some but if we do that and all continues to function at appropriate levels, that will provide the County with that extra surety.

I think this covers the key points. Please review and get back to me with any questions or comments. thank-you

Leslie

Leslie Radway, P.Eng. | Transportation Engineer
Bunt \& Associates Engineering Ltd.
Suite 113, $33411^{\text {th }}$ Avenue SE, Calgary, AB T2G 0Y2
w www.bunteng.com
Calgary | Edmonton | Kelowna | Vancouver | Victoria
[EXTERNAL EMAIL] This email has originated from outside of the Foothills County organization. Do not click on any links or open any attachments unless you recognize the senders Name and Email address.

Intersection Turning Movement Count Summary: 2 Street East \& Dunbow Road AM Peak Hour: 8:00 AM to 9:00 AM $\begin{array}{llllll}\text { E/W Road: } & \text { Dunbow Road } & \text { Mid-day Peak Hour: } & 11: 30 \mathrm{AM} & \text { to } & \text { 12:30 PM } \\ \text { Cout Dat }\end{array} \quad$ Thursday \quad PM Count Date: June 30, 2022
Weather: Weather: Road Condit
Project \#:
Project \#: 02-22-0118

PHF (AM Peak Hour): 0.82
$\begin{array}{lll}\text { PHF (Mid-day Peak Hour): } \\ \text { PHF (PM Peak Hour): } & 0.89 \\ 0.91\end{array}$

Time Starting	2 Street East												Dunbow Road																					
	Northbound (South Leg)						Southbound (North Leg)						Westbo	Westbound (East Leq) Eastbound (West Leq)								Eastbound (West Leg)			Pedestrians						Cyclists			
	Left		Throug		Right		Left		Throug		Right		Left		Throug		Right		Left		Throua		Right		Total Vehicle		West	East	North	South				
	Car	Truck	Car	Truck		Truck	Car	Truck	Car	Truck		Truck	Car	Truck		Truck	Car	Truck	Car	Truck		Truck	Car	Truck		Hourly	Side	side	Side	side	NB	SB	WB	EB
7:00	0	0	0	0	0	0	23		0	0	2	0	0	0	27		5	1	7	1	26	2	0	0	98		0	0	0	0	0	0	0	
7:15	0	0	0	0	0	0	11		0	0	5	0	0	0	32	3	5	1	6	4	34	4	0	0	106		0	0	0	0	0	0	0	0
7:30	0		0				24		0		4			0	40		9		8		22		0	0	125		0	0	0	0	0	0	0	
7:45	0	0	0	0	0	0	27	2	1	0	6	0	0	0	46	6	8	0	11	1	43	0	0	0	151	480	0	0	0	0	0	0	0	0
8:00	0	0	0	0	0	0	18	0	0	0	3	,		0	33	6	7	2	10	0	25	2	0	0	108	490	0	0	0	0	0	0	0	
8:15	0	0	1	0	1	0	20	0	1	0	3	0	1	0	39	5	19	2	12	3	23	1	0	0	131	515	0	0	0	0	0	0	0	0
8:30	0	0	0	0	0	0	27	2	0	0	5	1	0	0	65	1	13	2	17	2	35	2	0	0	172	562	0	0	0	0	0	0	0	
8:45	0		0	0	0		20		0		7	1		0	40	6	23		20		31		0	0	153	564	0	0	0	0	0	0	0	0
2 Hour Total	0	0	1	0	2	0	170	8	2	0	35	4	2	0	322	37	89	12	91	13	239	17	0	0			0	0	0	0	0	0	0	0
								178				39		2		359									1044									
Peak Hour Total	0	0	1		1		85	3	1		18		2	20	177\|	18	62	8	59	- 6	114	${ }^{6}$	0	0			0	0	0	0	0	0	0	0
		0		1		1	-	88		1		21		2		195		70		65		120		0		564								

11:00	0	0	1	0	0	0	27	0	0	0	10	0	0	0	41	3	22	1	26	3	33	7	0	0	174		0	0	0	0	0	0	0	-
11:15	1	0	0	0	0	0	24	1	1	1	9	1	0	0	23	0	19	1	8	0	40	2	0	0			0	0	0	0	0	0	0	0
11:30	0	0	0	0	0	0	31	1	0	0	13	3	0	0	51	5	31	1	25	1	47	2	0	0	211		,	0	0	0	0	,	0	0
11:45	0	1	0	1	0	1	28	1	0	1	10	1	0	0	43	0	25	1	16	2	41	2	0	0	174	690	0	0	0	0	0		0	
12:00	0	0	0	0	0	0	29	0	0	0	6	2	0	0	51	4	23	2	26	3	39	0	0	0	185	701	,	0	0	0	0	0	0	0
12:15	0	0	0	0	1	0	24	1	0	0	10	1	0	0	53	3	23	1	23	0	40	1	0	0	181	751	0	0	0	0	0	0	0	
12:30	0	0	0	0	0	0	25	2	0	0	9	1	0	0	43	5	20	1	30	2	34	6	0	0	178	718	0	0	0	0	0			
12:45	0	0	0	0	0	0	24	3	0	0	8	1	0	0	45	7	34	2	24	2	34	6	0	0	190	734	0	0	0	0	0	0		
2 Hour Total	1	1	1	1	1	1	212	9	1	2	75	10	0	0	350	27	197	10	178	13	308	26	0	0			0	0	0	0	0	0	1	
		2		2		2		221		3		85		0		377		207		191		334		,	1424									
Peak Hour Total	0	1	0	1	1	1	112	3	0	1	39	76	0	0	198\|	12	102\|	5	90	6	167\|	5	0	0			0	0	0	0	0	0	0	

Peak Hour Volumes

Heavy Vehicle Percentage

Intersection Turning Movement Count Summary: $\quad 2$ Street East \& Dunbow Road

E/W Road: Dunbow Roa
Count Date: July 21, 2022
Weather:
Road Condition:
Project \#:
Dry
$02-22-0118$
AM Peak Hour:
PM Peak Hour:
Thursday
4:30 PM to 5:30 PM
PHF (AM Peak Hour):

2 Street East

Peak Hour Volumes

Heavy Vehicle Percentage

APPENDIX C

Synchro \& SIDRA Reports

MOVEMENT SUMMARY

7 Site: 101 [Background (Site Folder: 10 Year)]
PM Peak
Site Category: (None)
Roundabout

Vehicle Movement Performance													
Mov Turn ID		$\begin{aligned} & \text { JT } \\ & \text { MES } \\ & \text { HV] } \\ & \% \end{aligned}$		$\begin{aligned} & \text { ND } \\ & \text { VS } \\ & \text { HV] } \end{aligned}$	Deg. Satn v/c	Aver. Delay sec	Level of Service		CK OF UE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South: 2 Street E													
3 L2	13	0.0	14	0.0	0.018	4.1	LOS A	0.1	0.5	0.46	0.31	0.46	43.4
18 R2	2	0.0	2	0.0	0.018	4.1	LOS A	0.1	0.5	0.46	0.31	0.46	43.8
Approach	15	0.0	16	0.0	0.018	4.1	LOS A	0.1	0.5	0.46	0.31	0.46	43.5
East: Dunbow Road													
1 L2	14	0.0	15	0.0	0.558	8.9	LOS A	4.7	37.0	0.15	0.04	0.15	42.4
6 T1	651	5.0	708	5.0	0.558	9.0	LOS A	4.7	37.0	0.15	0.04	0.15	48.5
Approach	665	4.9	723	4.9	0.558	9.0	LOS A	4.7	37.0	0.15	0.04	0.15	48.3
West: Dunbow Road													
2 T1	354	5.0	385	5.0	0.310	5.6	LOS A	1.7	13.8	0.10	0.03	0.10	51.7
12 R 2	16	0.0	17	0.0	0.310	5.4	LOS A	1.7	13.8	0.10	0.03	0.10	44.3
Approach	370	4.8	402	4.8	0.310	5.6	LOS A	1.7	13.8	0.10	0.03	0.10	51.5
All Vehicles	1050	4.8	1141	4.8	0.558	7.7	LOS A	4.7	37.0	0.14	0.04	0.14	49.3

Site Level of Service (LOS) Method: Delay \& v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.
Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.
LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6).
Roundabout Capacity Model: US HCM 6.
Delay Model: HCM Delay Formula (Geometric Delay is not included).
Queue Model: HCM Queue Formula.
Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

MOVEMENT SUMMARY

\square Site: 101 [Full Development (Site Folder: 10 Year)]
PM Peak
Site Category: (None)
Roundabout

Vehicle Movement Performance													
$\begin{aligned} & \text { Mov Turn } \\ & \text { ID } \end{aligned}$	INPUT VOLUMES		DEMAND FLOWS		Deg. Satn v/c	Aver. Delay sec	Level of Service	95\% BACK OF QUEUE		Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South: 2 Street E													
3 L2	32	0.0	35	0.0	0.075	4.6	LOS A	0.3	2.4	0.48	0.37	0.48	44.7
18 R2	31	0.0	34	0.0	0.075	4.6	LOS A	0.3	2.4	0.48	0.37	0.48	44.8
Approach	63	0.0	68	0.0	0.075	4.6	LOS A	0.3	2.4	0.48	0.37	0.48	44.8
East: Dunbow Road													
1 L2	64	0.0	70	0.0	0.611	10.1	LOS B	5.6	44.0	0.27	0.10	0.27	41.1
6 T1	651	5.0	708	5.0	0.611	10.2	LOS B	5.6	44.0	0.27	0.10	0.27	47.1
Approach	715	4.6	777	4.6	0.611	10.2	LOS B	5.6	44.0	0.27	0.10	0.27	46.7
West: Dunbow Road													
$2 \quad \mathrm{~T} 1$	354	5.0	385	5.0	0.363	6.4	LOS A	2.1	16.8	0.26	0.12	0.26	50.9
12 R 2	57	0.0	62	0.0	0.363	6.3	LOS A	2.1	16.8	0.26	0.12	0.26	43.3
Approach	411	4.3	447	4.3	0.363	6.4	LOS A	2.1	16.8	0.26	0.12	0.26	50.1
All Vehicles	1189	4.2	1292	4.2	0.611	8.6	LOS A	5.6	44.0	0.28	0.12	0.28	47.7

Site Level of Service (LOS) Method: Delay \& v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.
Vehicle movement LOS values are based on average delay and v / c ratio (degree of saturation) per movement.
LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6).
Roundabout Capacity Model: US HCM 6.
Delay Model: HCM Delay Formula (Geometric Delay is not included).
Queue Model: HCM Queue Formula.
Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BUNT \& ASSOCIATES ENGINEERING (AB) LTD | Licence: PLUS / 1PC | Processed: August 27, 2022 10:10:08 PM
Project: M:IOperations\Dept SAB\Projects\2022\0118 2nd Street E at Dunbow Road\4.0 Analysis \& Design\SIDRAI2 Street \& Dunbow.sip9

MOVEMENT SUMMARY

카 Site: 101 [Background (Site Folder: 25 Year)]
PM Peak
Site Category: (None)
Roundabout

Vehicle Movement Performance													
Mov Turn ID		$\begin{aligned} & \text { JT } \\ & \text { MES } \\ & \text { HV] } \\ & \% \end{aligned}$		$\begin{aligned} & \text { ND } \\ & \text { VS } \\ & \text { HV] } \end{aligned}$	Deg. Satn v/c	Aver. Delay sec	Level of Service		CK OF JE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South: 2 Street E													
3 L2	30	0.0	33	0.0	0.061	6.3	LOS A	0.2	1.8	0.60	0.56	0.60	41.3
18 R2	6	0.0	7	0.0	0.061	6.3	LOS A	0.2	1.8	0.60	0.56	0.60	42.0
Approach	36	0.0	39	0.0	0.061	6.3	LOS A	0.2	1.8	0.60	0.56	0.60	41.4
East: Dunbow Road													
1 L2	23	0.0	25	0.0	0.461	7.3	LOS A	2.9	23.0	0.18	0.06	0.18	43.7
6 T1	1084	5.0	1178	5.0	0.461	7.4	LOS A	2.9	23.0	0.18	0.06	0.18	49.9
Approach	1107	4.9	1203	4.9	0.461	7.4	LOS A	2.9	23.0	0.18	0.06	0.18	49.8
West: Dunbow Road													
2 T1	661	5.0	718	5.0	0.289	5.3	LOS A	1.4	11.4	0.12	0.04	0.12	52.0
12 R 2	40	0.0	43	0.0	0.289	5.2	LOS A	1.4	11.4	0.12	0.04	0.12	44.4
Approach	701	4.7	762	4.7	0.289	5.3	LOS A	1.4	11.4	0.12	0.04	0.12	51.7
All Vehicles	1844	4.7	2004	4.7	0.461	6.6	LOS A	2.9	23.0	0.17	0.06	0.17	50.3

Site Level of Service (LOS) Method: Delay \& v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.
Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.
LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6).
Roundabout Capacity Model: US HCM 6.
Delay Model: HCM Delay Formula (Geometric Delay is not included).
Queue Model: HCM Queue Formula.
Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

MOVEMENT SUMMARY

\square Site: 101 [Full Development (Site Folder: 25 Year)]
PM Peak
Site Category: (None)
Roundabout

Vehicle Movement Performance													
Mov Turn ID	INPUT VOLUMES		DEMAND FLOWS		Deg. Satn v/c	Aver. Delay sec	Level of Service	$\begin{aligned} & \text { 95\% BACK OF } \\ & \text { QUEUE } \\ & \text { [Veh. Dist] } \\ & \text { veh } \quad \mathrm{m} \end{aligned}$		Prop. Que	Effective Stop Rate		Aver. Speed km/h
South: 2 Street E													
3 L2	49	0.0	53	0.0	0.143	7.3	LOS A	0.6	4.3	0.63	0.63	0.63	41.4
18 R2	35	0.0	38	0.0	0.143	7.3	LOS A	0.6	4.3	0.63	0.63	0.63	42.1
Approach	84	0.0	91	0.0	0.143	7.3	LOS A	0.6	4.3	0.63	0.63	0.63	41.7
East: Dunbow Road													
1 L2	73	0.0	79	0.0	0.489	7.8	LOS A	3.2	25.3	0.25	0.11	0.25	42.9
6 T1	1084	5.0	1178	5.0	0.489	7.9	LOS A	3.2	25.3	0.25	0.11	0.25	49.2
Approach	1157	4.7	1258	4.7	0.489	7.9	LOS A	3.2	25.3	0.25	0.11	0.25	48.9
West: Dunbow Road													
2 T1	661	5.0	718	5.0	0.321	5.8	LOS A	1.6	12.9	0.24	0.12	0.24	51.4
12 R 2	81	0.0	88	0.0	0.321	5.7	LOS A	1.6	12.9	0.24	0.12	0.24	43.7
Approach	742	4.5	807	4.5	0.321	5.8	LOS A	1.6	12.9	0.24	0.12	0.24	50.8
All Vehicles	1983	4.4	2155	4.4	0.489	7.1	LOS A	3.2	25.3	0.26	0.13	0.26	49.3

Site Level of Service (LOS) Method: Delay \& v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.
Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.
LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6).
Roundabout Capacity Model: US HCM 6.
Delay Model: HCM Delay Formula (Geometric Delay is not included).
Queue Model: HCM Queue Formula.
Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BUNT \& ASSOCIATES ENGINEERING (AB) LTD | Licence: PLUS / 1PC | Processed: August 27, 2022 10:13:00 PM
Project: M:IOperations\Dept SAB\Projects\2022\0118 2nd Street E at Dunbow Road\4.0 Analysis \& Design\SIDRAI2 Street \& Dunbow.sip9

M:IOperations|Dept SAB|Projects|202210118 2nd Street E at Dunbow Road14.0 Analysis \& Design|SynchrolFinal|Existing AM Peak.syn Synchro 9

M:IOperations|Dept SAB|Projects|202210118 2nd Street E at Dunbow Road14.0 Analysis \& Design|SynchrolFinallExisting PM Peak .syn Synchro 9

M:IOperations|Dept SAB|Projects|202210118 2nd Street E at Dunbow Road14.0 Analysis \& Design|SynchrolFinallOpening Day Background AM Peak T-in Synchro 9

M:IOperations|Dept SAB|Projects|202210118 2nd Street E at Dunbow Road14.0 Analysis \& Design|Synchro|FinallOpening Day Background AM Peak.syn Synchro 9

M:IOperations|Dept SAB|Projects|202210118 2nd Street E at Dunbow Road14.0 Analysis \& Design|Synchro|FinallOpening Day AM Peak T-intersection.sy Synchro 9

M:IOperations|Dept SAB|Projects|202210118 2nd Street E at Dunbow Road14.0 Analysis \& Design|SynchrolFinallOpening Day AM Peak.syn Synchro 9

M:IOperations|Dept SAB|Projects|202210118 2nd Street E at Dunbow Road14.0 Analysis \& Design|SynchrolFinallOpening Day Background PM Peak T-in Synchro 9

M:IOperations|Dept SAB|Projects|202210118 2nd Street E at Dunbow Road14.0 Analysis \& Design|SynchrolFinallOpening Day Background PM Peak .syn Synchro 9

M:IOperations|Dept SAB|Projects|202210118 2nd Street E at Dunbow Road14.0 Analysis \& Design|SynchrolFinallOpening Day PM Peak T-intersection.sy Synchro 9

M:IOperations|Dept SAB|Projects1202210118 2nd Street E at Dunbow Road14.0 Analysis \& Design|SynchrolFinallOpening Day PM Peak .syn Synchro 9

M:IOperations\Dept SAB\Projects\202210118 2nd Street E at Dunbow Road\4.0 Analysis \& Design\SynchrolFinall10 Year Background PM Peak .syn Synchro 9

M:IOperations|Dept SAB|Projects|202210118 2nd Street E at Dunbow Road14.0 Analysis \& Design|SynchrolFinall10 Year PM Peak .syn Synchro 9

M:IOperations\Dept SAB\Projects\2022l0118 2nd Street E at Dunbow Road\4.0 Analysis \& DesignlSynchrolFinall25 Year Background PM Peak .syn Synchro 9

Splits and Phases: 1:2 Street E \& Dunbow Road

M:IOperations\Dept SAB\Projects\202210118 2nd Street E at Dunbow Road\4.0 Analysis \& Design\SynchrolFinall25 Year Background PM Peak .syn Synchro 9

M:IOperations|Dept SAB|Projects|202210118 2nd Street E at Dunbow Road14.0 Analysis \& Design|SynchrolFinall25 Year PM Peak .syn Synchro 9

	\rightarrow		t		4	p
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Pedestrian Calls (\#/hr)	0		0	0	0	
Act Efft Green (s)	40.7			40.7	10.3	
Actuated g/C Ratio	0.68			0.68	0.17	
v / C Ratio	0.37			0.60	0.34	
Control Delay	4.6			7.0	18.3	
Queue Delay	0.0			0.0	0.0	
Total Delay	4.6			7.0	18.3	
LOS	A			A	B	
Approach Delay	4.6			7.0	18.3	
Approach LOS	A			A	B	
Queue Length 50th (m)	16.6			30.7	7.4	
Queue Length 95th (m)	27.1			50.6	19.2	
Internal Link Dist (m)	126.0			126.0	126.0	
Turn Bay Length (m)						
Base Capacity (vph)	2283			1980	585	
Starvation Cap Reductn	0			0	0	
Spillback Cap Reductn	0			0	0	
Storage Cap Reductn	0			0	0	
Reduced v/c Ratio	0.37			0.60	0.19	
Intersection Summary						
Cycle Length: 60						
Actuated Cycle Length: 60						
Offset: 24 (40\%), Referenced to phase 4:EBT and 8:WBTL, Start of Green						
Natural Cycle: 60						
Control Type: Actuated-Coordinated						
Maximum v/c Ratio: 0.60						
Intersection Signal Delay: 6.6					sectio	OS: A
Intersection Capacity Utilization 73.2\%				ICU Level of Service D		
Analysis Period (min) 15						

Splits and Phases: 1:2 Street E \& Dunbow Road

M:IOperations|Dept SAB|Projects|202210118 2nd Street E at Dunbow Road14.0 Analysis \& Design|SynchrolFinall25 Year PM Peak .syn Synchro 9

M:IOperations|Dept SAB|Projects|202210118 2nd Street E at Dunbow Road14.0 Analysis \& Design|SynchrolFinall25 Year PM Peak .syn Synchro 9

M:IOperations|Dept SAB|Projects|202210118 2nd Street E at Dunbow Road14.0 Analysis \& Design|SynchrolFinall25 Year PM Peak .syn Synchro 9

APPENDIX D
Warrants

Illumination of Isolated Rural Intersections
 LICHTING WARRANT SPREADSHEET

This spreadsheet is to be used in conjunction with IIlumination of Isolated Rural Intersections, Transportation Association of Canada, February 2001.
Please enter information in the cells with yellow background

INTERSECTION CHARACTERISTICS			Date Other	August 1, 2022		
Dunbow Road 2 Street E Foothills County	Main Road Minor Road City/Town			Background, Opening Day (2024)		
GEOMETRIC FACTORS						
Channelization Rating Presence of raised channelization? (Y / N) Highest operating speed on raised, channelized approach (km/h) Channelization Factor	Value Descriptive	Rating	Weight	Comments Refer to Table 1(A) to determine rating value	Check	Score
		0			OK	
	n				OK	
			5		OK	
					OK	0
Approach Sight Distance on most constrained approach (\%)	100	0	10	Relative to the recommended minimum sight distance	OK	0
Posted Speed limit (in 10's of km / h)	80			Enter "T" for tangent (no horizontal curve at the intersection)	OK	
Radius of Horizontal Curve (m)	t				OK	
		0				
		0				
	C	0				
		0				
Horizontal Curvature Factor		0	5		OK	0
Angle of Intersection (10's of Degrees)	90	0	5		OK	0
Downhill Approach Grade (x.x\%)	0.0	0	3	Rounded to nearest tenth of a percent	OK	0
Number of Intersection Legs	4	2	3	Number of legs $=3$ or more	OK	6
				Geometric Fa	Subtotal	6

OPERATIONAL FACTORS

Is the intersection signalized? (Y / N)	n			Calculate the Signalization Warrant Factor		
AADT on Major Road (2-way)	10500	4	10		OK	40
AADT on Minor Road (2-way)	4600	4	20	Wther Use the two AADT inputs OR the Descriptive Signalization	OK	80
Signalization Warrant	Descriptive		30	Warrant (Unused values should be set to Zero) Refer to Table	OK	0
					OK	
Night-Time Hourly Pedestrian Volume	0	0	10	Refer to Table 1(B), note \#2, to account for children and seniors	OK	0
Intersecting Roadway Classification	Descriptive	0	5	Refer to Table 1(B) for ratings.	OK	0
Operating Speed or Posted Speed on Major Road (km/h)	80	3	5	Refer to Table 1(B), note \#3	OK	15
Operating Speed on Minor Road (km/h)	50	0	5	Refer to Table 1(B), note \#3	OK	0
				Operational Factors Subtotal		135
ENVIRONMENTAL FACTOR						
Lighted Developments within 150 m radius of intersection	4	4	5	Maximum of 4 quadrants	OK	20
				Environmental Factor Subtotal		20
COLLISION HISTORY						
Average Annual night-time collision frequency due to inadequate lighting (collisions/yr, rounded to nearest whole \#) OR Collision Rate over last 3 years, due to inadequate lighting (/MEV) Is the average ratio of all night to day collisions >=1.5 (Y/N)	0.0	0	0	Enter either the annual frequency (See Table 1(C), note \#4)	OK	0
				OR the number of collisions / MEV		
	$\begin{aligned} & 0 \\ & n \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	0	(Unused values should be set to Zero)	$\begin{aligned} & \text { OK } \\ & \text { OK } \end{aligned}$	0
					OK	
				Collision History Subtotal		0

Check Intersection Signalization: Intersection is not Signalized

ILLUMINATION WARRANTED
DELINEATION LIGHTING TO ILLUMINATE PEDESTRIANS OR CROSS STREET TRAFFIC

SUMMARY	
Geometric Factors Subtotal	6
Operational Factor Subtotal	135
Environmental Factor Subtotal	20
Collision History Subtotal	0
TOTAL POINTS	161

Illumination of Isolated Rural Intersections
 LICHTING WARRANT SPREADSHEET

This spreadsheet is to be used in conjunction with IIlumination of Isolated Rural Intersections, Transportation Association of Canada, February 2001.
Please enter information in the cells with yellow background

INTERSECTION CHARACTERISTICS	
Dunbow Road Main Road 2 Street E Minor Road Foothills County City/Town	

	Date
Other	Openst 1, 2022

OPERATIONAL FACTORS

Check Intersection Signalization: Intersection is not Signalized

ILLUMINATION WARRANTED
delineation lighting to illuminate pedestrians or CROSS STREET TRAFFIC

SUMMARY	
Geometric Factors Subtotal	6
Operational Factor Subtotal	135
Environmental Factor Subtotal	20
Collision History Subtotal	0
TOTAL POINTS	161

Illumination of Isolated Rural Intersections
 LICHTING WARRANT SPREADSHEET

This spreadsheet is to be used in conjunction with IIlumination of Isolated Rural Intersections, Transportation Association of Canada, February 2001.
Please enter information in the cells with yellow background

OPERATIONAL FACTORS

Check Intersection Signalization: Intersection is not Signalized

LIGHTING IS NOT WARRANTED

| SUMMARY | |
| ---: | :---: | :---: |
| Geometric Factors Subtotal | 6 |
| Operational Factor Subtotal | 55 |
| Environmental Factor Subtotal | 20 |
| Collision History Subtotal | 0 |
| | |
| TOTAL POINTS | $\mathbf{8 1}$ |

Illumination of Isolated Rural Intersections
 LICHTING WARRANT SPREADSHEET

This spreadsheet is to be used in conjunction with IIlumination of Isolated Rural Intersections, Transportation Association of Canada, February 2001.
Please enter information in the cells with yellow background

INTERSECTION CHARACTERISTICS	
Dunbow Road Main Road 2 Street E Minor Road Foothills County City/Town	

GEOMETRIC FACTORS						
	Value	Rating	Weight	Comments	Check	Score
Channelization Rating	Descriptive	0		Refer to Table 1(A) to determine rating value	OK	
Presence of raised channelization? (Y / N)	n				OK	
Highest operating speed on raised, channelized approach (km/h)			5		OK	
Channelization Factor					OK	0
Approach Sight Distance on most constrained approach (\%)	100	0	10	Relative to the recommended minimum sight distance	OK	0
Posted Speed limit (in 10's of km/h)	80				OK	
Radius of Horizontal Curve (m)	t			Enter "T" for tangent (no horizontal curve at the intersection)	OK	
Posted Speed Category =		0				
Posted Speed Category =		0				
Posted Speed Category =	C	0				
Posted Speed Category =		0				
Horizontal Curvature Factor		0	5		OK	0
Angle of Intersection (10's of Degrees)	90	0	5		OK	0
Downhill Approach Grade (x.x\%)	0.0	0	3	Rounded to nearest tenth of a percent	OK	0
Number of Intersection Legs	4	2	3	Number of legs $=3$ or more	OK	6
Geometric Factors Subtotal						6

OPERATIONAL FACTORS

Check Intersection Signalization: Intersection is not Signalized	SUMMARY	
	Geometric Factors Subtotal	6
	Operational Factor Subtotal	115
ILLUMINATION WARRANTED	Environmental Factor Subtotal Collision History Subtotal	20 0
REVIEW SITE AND COLLISIONS TO DETERMINE LIGHTING TYPE (PARTIAL OR DELINEATION)	TOTAL POINTS	141

Heritage Crossing

Traffic Review
Final

Prepared for
2291463 Alberta Ltd.

Date
May 29, 2023

Project Number
02-22-0118

CORPORATE AUTHORIZATION

Prepared By:

Reviewed By:
Ezekiel Dada, PhD, P.Eng.
Jason Dunn, P.Eng.

Bunt \& Associates Engineering Ltd.

\#113-33411 Avenue SE
Calgary, AB T2G OY2

Telephone: (403) 252-3343

Date: 2023-05-29
Project \#: 02-22-0118
Status: Final

APEGA Company Permit to Practice

Engineer's Stamp

This document entitled "Heritage Crossing Traffic Review" was prepared by Bunt \& Associates for the benefit of the client to whom it is addressed, in support of their Land Use Redesignation application to Foothills County. The analysis and conclusions/recommendations in the report reflect Bunt \& Associates' best professional judgment in light of the knowledge and information available to Bunt \& Associates at the time of preparation.

Foothills County shall be entitled to rely on this report for the specific purpose for which it was prepared. Foothills County may provide copies of the report to Foothills County Council, Foothills County Employees, and Foothills County Regulatory Boards, each of whom shall also be entitled to rely on this report in their official capacities for the specific purpose for which the report was prepared. Foothills County may also provide copies of the report to external governmental bodies having jurisdiction related to the project for which it was prepared.

Any use made of this report by a third party beyond those specifically noted here, or any reliance on or decisions based on it by any such third party, are the responsibility of such third parties. Bunt \& Associates accepts no responsibility for damages, if any, suffered by such third parties as a result of decisions made or actions based on this report.

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY 1
2. INTRODUCTION 3
2.1 Scope of Work 3
3. TRAFFIC CONDITIONS 4
3.1 Volumes 4
3.1.1 Future Background Traffic 4
3.1.1 After Development 11
3.2 Intersection Analysis 18
3.2.1 Background Analysis 19
3.2.2 After Development 21
4. CONCLUSION 23
4.1 Background 23
4.2 After Development 23
APPENDIX A Scope of Work
APPENDIX B ATEC Traffic Data
APPENDIX C Synchro Reports
APPENDIX D Signal Warrants
EXHIBITS
Exhibit 3.1: Existing Intersection Configurations 5
Exhibit 3.2: 2027 Background Traffic Volumes 6
Exhibit 3.3: 2037 Background Traffic Volumes 7
Exhibit 3.4: 2037 Background Traffic Volumes 8
Exhibit 3.5: 2042 Background Traffic Volumes 9
Exhibit 3.6: 2047 Background Traffic Volumes 10
Exhibit 3.7: Site Traffic Volumes 12
Exhibit 3.8: 2027 After Development Traffic Volumes 13
Exhibit 3.9: 2032 After Development Traffic Volumes 14
Exhibit 3.10: 2037 After Development Traffic Volumes 15
Exhibit 3.11: 2042 After Development Traffic Volumes 16
Exhibit 3.12: 2047 After Development Traffic Volumes 17
TABLES
Table 1.1: Findings \& Recommendations 2
Table 3.1: Background Intersection Analysis - 2027 19

Table 3.2: Background Intersection Analysis - 2032 19
Table 3.3: Background Intersection Analysis - 2037 19
Table 3.4: Background Intersection Analysis - 2042 20
Table 3.5: Background Intersection Analysis - 2047 20
Table 3.6: Signal Warrant Analysis 20
Table 3.7: After Development Intersection Analysis - 2027 21
Table 3.8: After Development Intersection Analysis - 2032 21
Table 3.9: After Development Intersection Analysis - 2037 21
Table 3.10: After Development Intersection Analysis - 2042 22
Table 3.11: Signal Warrant Analysis 22

1. EXECUTIVE SUMMARY

Bunt and Associates was retained by 2291463 Alberta Ltd. to undertake a Transportation Impact Assessment (TIA) for the Heritage Crossing Development, located in the Foothills County. The proposed development is for 153 residential units. The findings of the TIA were presented in the Heritage Crossing Transportation Impact Assessment Report ${ }^{1}$.

Alberta Transportation and Economic Corridors has requested that an additional study be undertaken to evaluate whether signalization of Highway 2 East \& Dunbow Road interchange is required. The purpose of this memorandum was to assess the impact of local traffic growth and determine the approximate horizon for traffic signal implimentation. The findings and recommendations are summarized in Table 1.1.

[^3]Table 1.1: Findings \& Recommendations

SECTION		FINDINGS
Highway 2 SB $\&$	Background	Study intersection is expected to operate acceptably at all Dorizons.
Dunbow Road	After Development	Study intersection is expected to operate acceptably at all horizons.
Highway 2 NB Dunbow Road Background	Northbound Left (NBL) movement is expected to operate with extended delays by 2042 but signalization is not warranted either at 2042 or 2047.	
	After Development	Northbound Left (NBL) movement is expected to operate with extended delays by 2032, but signalization is not warranted.

2. INTRODUCTION

Bunt and Associates was retained to undertake a Transportation Impact Assessment (TIA) for the Heritage Crossing Development, located in Foothills County. The proposed development is for 153 residential units. The findings of the TIA were initially presented in the Heritage Crossing Transportation Impact Assessment Report.

As part of the review process, Foothills County circulated the report to Alberta Transportation and Economic Corridors (ATEC) for their review.

ATEC requested that supplementary analysis to the previous TIA report be undertaken, with the purpose of determining the approximate time horizon that signalization is warranted at Highway 2 \& Dunbow Road interchange off-ramp intersections.

2.1 Scope of Work

Based on discussions with the ATEC (Appendix A), the scope of work for this study includes the following:

- Use the existing count from the ATEC website.
- Grow the movements at 2% pa (linear) at 5 -year intervals for the next 25 years.
- Review the background and after development scenarios for each 5-year interval.
- Identify if the ramp intersections on Dunbow Road require signalization at any of these horizons.
- Provide the information to ATEC in a technical memo.

[^4]
3. TRAFFIC CONDITIONS

Existing intersection configurations are illustrated in Exhibit 3.1.

3.1 Volumes

3.1.1 Future Background Traffic

The 2022 background volumes were obtained from the ATEC website, and a nominal 2% growth rate was applied to all movements within the intersection. Background traffic volumes used in the analysis are illustrated in Exhibit 3.2 (2027 Background traffic volumes), Exhibit 3.3 (2032 Background traffic volumes), Exhibit 3.4 (2037 Background traffic volumes), Exhibit 3.5 (2042 Background traffic volumes) and Exhibit 3.6 (2047 Background traffic volumes).

Exhibit 3.1
Existing
Intersection Configuration

Exhibit 3.2
2027 Background Traffic Volumes

Exhibit 3.3
2032 Background Traffic Volumes

Exhibit 3.4
2037 Background Traffic Volumes

Exhibit 3.5
2042 Background Traffic Volumes

Exhibit 3.6
2047 Background Traffic Volumes

3.1.1 After Development

Development generated traffic from the TIA report was adjusted based on the distribution obtained from ATEC's counts. The traffic was then split into two intersections according to the available movements at each intersection.

Site traffic (Exhibit 3.7) was added to Background traffic to develop "After Development" traffic volumes as illustrated in Exhibit 3.8 (2027 After Development traffic volumes), Exhibit 3.9 (2032 After Development traffic volumes), Exhibit 3.10 (2037 After Development traffic volumes), Exhibit 3.11 (2042 After Development traffic volumes) and Exhibit 3.12 (2047 After Development traffic volumes).

Exhibit 3.7

Site Traffic Volumes

Exhibit 3.9
2032 After Development Traffic Volumes

Exhibit 3.10
2037 After Development Traffic Volumes

Exhibit 3.11
2042 After Development Traffic Volumes

Exhibit 3.12
2047 After Development Traffic Volumes

3.2 Intersection Analysis

Synchro 11 traffic analysis software was used to assess intersection operating conditions based on the methods outlined in the Highway Capacity Manual 2000. Traffic operations were assessed measures of effectiveness of volume-to-capacity (v / c) ratio, Level of Service (LOS) and $95^{\text {th }}$ percentile queue length.

The volume-to-capacity (v / c) ratio of an intersection movement represents the ratio between the demand volume and available capacity. ATEC accepts a v/c ratio of 0.85 or less. The Level of Service (LOS) rating is based on average vehicle delays ranging from LOS A (minimal delay) to LOS F (significant delay). ATEC accepts an overall LOS C at highway access intersections with a LOS D on any single approach at full buildout.

Intersection capacity analysis was completed for the following horizons:

- Background

2027
2032
2037
2042

- 2047
- After Development
- 2027
- 2032
- 2037
- 2042
- 2047

The analysis is completed as per ATEC's TIA guidelines with a saturation flow rate of 1900 vehicles per hour and a peak hour factor of 0.92 . The analysis uses a minimum hourly volume of 5 vehicles per movement in all horizons. The volume to capacity (v/c) ratio, level of service, average control delay (in seconds), and $95^{\text {th }}$ percentile queue (in metres) are summarized in this report. Synchro output reports are provided in Appendix C.

3.2.1 Background Analysis

Table 3.1: Background Intersection Analysis - 2027

INTERSECTION	MOVEMENT \& LANES		AM PEAK HOUR				PM PEAK HOUR			
			v/c	LOS	Delay	Queue	v/c	LOS	Delay	Queue
Highway 2 SB \& Dunbow Road (SB Stop Control)	EBT	2	0.11	A	0	<5	0.07	A	0	<5
	WBL	1	0.02	A	8	<5	<0.02	A	8	<5
	WBT	1	0.07	A	0	<5	0.05	A	0	<5
	SBL	1	0.31	B	15	11	0.32	B	13	11
	Overall		-	A	4.0	-	-	A	5.2	-
Highway 2 NB \& Dunbow Road (NB Stop Control)	EBL	1	0.20	A	9	6	0.09	A	8	<5
	EBT	1	0.15	A	0	<5	0.19	A	0	<5
	WBT	1	0.07	A	0	<5	0.04	A	0	<5
	NBL	1	0.12	C	25	<5	0.06	C	16	<5
	Overall		-	A	4.3	-	-	A	2.5	-

Table 3.2: Background Intersection Analysis - 2032

INTERSECTION	MOVEMENT \& LANES		AM PEAK HOUR				PM PEAK HOUR			
			v/c	LOS	Delay	Queue	v/c	LOS	Delay	Queue
Highway 2 SB \& Dunbow Road (SB Stop Control)	EBT	2	0.12	A	0	<5	0.07	A	0	<5
	WBL	1	0.02	A	9	<5	<0.02	A	8	<5
	WBT	1	0.07	A	0	<5	0.06	A	0	<5
	SBL	1	0.36	C	16	14	0.36	B	14	13
	Overall		-	A	4.3	-	-	A	5.4	-
Highway 2 NB \& Dunbow Road (NB Stop Control)	EBL	1	0.22	A	9	7	0.10	A	8	<5
	EBT	1	0.16	A	0	<5	0.21	A	0	<5
	WBT	1	0.07	A	0	<5	0.05	A	0	<5
	NBL	1	0.15	D	29	<5	0.08	C	18	<5
	Overall		-	A	4.5	-	-	A	2.5	-

Table 3.3: Background Intersection Analysis - 2037

INTERSECTION	MOVEMENT \& LANES		AM PEAK HOUR				PM PEAK HOUR			
			v/c	LOS	Delay	Queue	v/c	LOS	Delay	Queue
Highway 2 SB \& Dunbow Road (SB Stop Control)	EBT	2	0.13	A	0	<5	0.08	A	0	<5
	WBL	1	0.03	A	9	<5	<0.02	A	8	<5
	WBT	1	0.08	A	0	<5	0.06	A	0	<5
	SBL	1	0.41	C	17	16	0.47	B	14	16
	Overall		-	A	4.7	-	-	A	5.8	-
Highway 2 NB \& Dunbow Road (NB Stop Control)	EBL	1	0.24	A	9	8	0.11	A	8	<5
	EBT	1	0.18	A	0	<5	0.22	A	0	<5
	WBT	1	0.08	A	0	<5	0.05	A	0	<5
	NBL	1	0.19	D	34	6	0.09	C	19	<5
	Overall		-	A	4.7	-	-	A	2.6	-

Table 3.4: Background Intersection Analysis - 2042

INTERSECTION	MOVEMENT \& LANES		AM PEAK HOUR				PM PEAK HOUR			
			v/c	LOS	Delay	Queue	v/c	LOS	Delay	Queue
Highway 2 SB \& Dunbow Road (SB Stop Control)	EBT	2	0.14	A	0	<5	0.09	A	0	<5
	WBL	1	0.03	A	9	<5	<0.02	A	8	<5
	WBT	1	0.09	A	0	<5	0.07	A	0	<5
	SBL	1	0.47	C	20	20	0.44	C	15	19
	Overall		-	A	5.2	-	-	A	6.2	-
Highway 2 NB \& Dunbow Road (NB Stop Control)	EBL	1	0.26	A	9	9	0.11	A	8	<5
	EBT	1	0.19	A	0	<5	0.24	A	0	<5
	WBT	1	0.09	A	0	<5	0.06	A	0	<5
	NBL	1	0.24	E	42	8	0.10	C	21	<5
	Overall		-	A	5.1	-	-	A	2.7	-

Table 3.5: Background Intersection Analysis - 2047

INTERSECTION	MOVEMENT \& LANES		AM PEAK HOUR				PM PEAK HOUR			
			v/c	LOS	Delay	Queue	v/c	LOS	Delay	Queue
Highway 2 SB \& Dunbow Road (SB Stop Control)	EBT	2	0.15	A	0	<5	0.09	A	0	<5
	WBL	1	0.03	A	9	<5	<0.02	A	8	<5
	WBT	1	0.09	A	0	<5	0.07	A	0	<5
	SBL	1	0.53	C	22	25	0.49	C	17	22
	Overall		-	A	6.0	-	-	A	6.7	-
Highway 2 NB \& Dunbow Road (NB Stop Control)	EBL	1	0.28	A	9	10	0.12	A	8	<5
	EBT	1	0.20	A	0	<5	0.26	A	0	<5
	WBT	1	0.09	A	0	<5	0.06	A	0	<5
	NBL	1	0.31	F	52	10	0.12	C	23	<5
	Overall		-	A	5.5	-	-	A	2.8	-

The Background analysis showed the northbound left turn (NBL) movement of Highway 2 NB / Dunbow Road intersection is expected to operate at LOS E by 2042 and LOS F by 2047.

Signal warrant analysis was completed for the candidate study intersection based on Transportation Association of Canada (TAC) Traffic Signal and Pedestrian Signal Head Warrant Handbook (2014). A score of 100 points or more indicates a traffic signal is warranted. 6- hour raw traffic volumes were obtained from ATEC and used for the analysis, and they were calculated by applying the observed 6-hour volume factors in the traffic counts. 6-hour factor of 3.09 is obtained for Highway 2 / Dunbow Road intersection. The results of signal warrant analysis are summarized in Table 3.6, and details are included in Appendix D. It is noted that due to low northbound left volumes, there will be no more than 1 vehicle queue, though that one vehicle may experience up to 52 seconds delay.

Table 3.6: Signal Warrant Analysis

INTERSECTION	HORIZON	SIGNAL SCORE		COMMENT	
		Total	Vehicle		
Highway 2 NB \& Dunbow Road	2042 Background	$33 / 100$	33	0	Not Warranted
	2047 Background	$38 / 100$	38	0	Not Warranted

Signalization at Highway 2 NB / Dunbow Road intersection is not warranted in either horizon.

3.2.2 After Development

Table 3.7: After Development Intersection Analysis - 2027

INTERSECTION	MOVEMENT \& LANES		AM PEAK HOUR				PM PEAK HOUR			
			v / c	LOS	Delay	Queue	v/c	LOS	Delay	Queue
Highway 2 SB \& Dunbow Road (SB Stop Control)	EBT	2	0.13	A	0	<5	0.08	A	0	<5
	WBL	1	0.02	A	9	<5	<0.02	A	8	<5
	WBT	1	0.07	A	0	<5	0.06	A	0	<5
	SBL	1	0.34	C	16	12	0.33	B	13	12
	Overall		-	A	3.8	-	-	A	4.9	-
Highway 2 NB \& Dunbow Road (NB Stop Control)	EBL	1	0.25	A	9	8	0.12	A	8	<5
	EBT	1	0.15	A	0	<5	0.19	A	0	<5
	WBT	1	0.07	A	0	<5	0.04	A	0	<5
	NBL	1	0.17	D	33	<5	0.11	C	19	<5
	Overall		-	A	5.1	-	-	A	3.2	-

Table 3.8: After Development Intersection Analysis - 2032

INTERSECTION	MOVEMENT \& LANES		AM PEAK HOUR				PM PEAK HOUR			
			v/c	LOS	Delay	Queue	v/c	LOS	Delay	Queue
Highway 2 SB \& Dunbow Road (SB Stop Control)	EBT	2	0.14	A	0	<5	0.09	A	0	<5
	WBL	1	0.02	A	9	<5	<0.02	A	8	<5
	WBT	1	0.08	A	0	<5	0.06	A	0	<5
	SBL	1	0.39	C	17	15	0.38	B	14	14
	Overall		-	A	4.2	-	-	A	5.2	-
Highway 2 NB \& Dunbow Road (NB Stop Control)	EBL	1	0.27	A	9	9	0.13	A	8	<5
	EBT	1	0.16	A	0	<5	0.21	A	0	<5
	WBT	1	0.07	A	0	<5	0.05	A	0	<5
	NBL	1	0.22	E	40	7	0.13	C	21	<5
	Overall		-	A	5.4	-	-	A	3.3	-

Table 3.9: After Development Intersection Analysis - 2037

INTERSECTION	MOVEMENT \& LANES		AM PEAK HOUR				PM PEAK HOUR			
			v/c	LOS	Delay	Queue	v/c	LOS	Delay	Queue
Highway 2 SB \& Dunbow Road (SB Stop Control)	EBT	2	0.15	A	0	<5	0.09	A	0	<5
	WBL	1	0.03	A	9	<5	<0.02	A	8	<5
	WBT	1	0.08	A	0	<5	0.07	A	0	<5
	SBL	1	0.44	C	19	18	0.42	B	15	17
	Overall		-	A	4.7	-	-	A	5.6	-
Highway 2 NB \& Dunbow Road (NB Stop Control)	EBL	1	0.29	A	9	10	0.14	A	8	<5
	EBT	1	0.18	A	0	<5	0.22	A	0	<5
	WBT	1	0.08	A	0	<5	0.05	A	0	<5
	NBL	1	0.28	E	49	9	0.14	C	23	<5
	Overall		-	A	5.8	-	-	A	3.4	-

Table 3.10: After Development Intersection Analysis - 2042

INTERSECTION	MOVEMENT \& LANES		AM PEAK HOUR				PM PEAK HOUR			
			v/c	LOS	Delay	Queue	v/c	LOS	Delay	Queue
Highway 2 SB \& Dunbow Road (SB Stop Control)	EBT	2	0.16	A	0	<5	0.10	A	0	<5
	WBL	1	0.03	A	9	<5	<0.02	A	8	<5
	WBT	1	0.09	A	0	<5	0.07	A	0	<5
	SBL	1	0.50	C	21	23	0.47	C	16	20
	Overall		-	A	5.3	-	-	A	6.1	-
Highway 2 NB \& Dunbow Road (NB Stop Control)	EBL	1	0.31	A	9	11	0.15	A	8	<5
	EBT	1	0.19	A	0	<5	0.24	A	0	<5
	WBT	1	0.09	A	0	<5	0.06	A	0	<5
	NBL	1	0.35	F	61	11	0.17	C	25	<5
	Overall		-	A	6.2	-	-	A	3.4	-

Table 3.11: After Development Intersection Analysis - 2047

INTERSECTION	MOVEMENT \& LANES		AM PEAK HOUR				PM PEAK HOUR			
			v/c	LOS	Delay	Queue	v/c	LOS	Delay	Queue
Highway 2 SB \& Dunbow Road (SB Stop Control)	EBT	2	0.17	A	0	<5	0.11	A	0	<5
	WBL	1	0.03	A	9	<5	<0.02	A	9	<5
	WBT	1	0.09	A	0	<5	0.08	A	0	<5
	SBL	1	0.57	C	25	28	0.52	C	18	24
	Overall		-	A	6.1	-	-	A	6.7	-
Highway 2 NB \& Dunbow Road (NB Stop Control)	EBL	1	0.33	A	9	12	0.15	A	8	<5
	EBT	1	0.20	A	0	<5	0.26	A	0	<5
	WBT	1	0.09	A	0	<5	0.06	A	0	<5
	NBL	1	0.45	F	81	15	0.20	D	28	6
	Overall		-	A	7.0	-	-	A	3.6	-

The After Development analysis showed the northbound left turn (NBL) movement at Highway 2 NB / Dunbow Road intersection is expected to operate with up to 40 seconds delay by 2032 . Similar results were obtained for 2037, 2042 and 2047 post development traffic conditions.

Signal warrant analysis was completed for this movement using TAC's Traffic Signal and Pedestrian Signal Head Warrant Handbook (2014). 6- hour raw traffic volumes were obtained from ATEC and used for the analysis, and they were calculated by applying the observed 6 -hour volume factors in the traffic counts. 6hour factor of 3.09 is obtained for Highway 2 / Dunbow Road intersection. The results of signal warrant analysis are summarized in Table 3.12, and details are included in Appendix D.

Table 3.12: Signal Warrant Analysis

INTERSECTION	HORIZON	SIGNAL SCORE			COMMENT
		Total	Vehicle	Pedestrian	
Highway 2 NB \& Dunbow Road	2032 After Development	32/100	32	0	Not Warranted
	2037 After Development	36/100	36	0	Not Warranted
	2042 After Development	42/100	42	0	Not Warranted
	2047 After Development	47/100	47	0	Not Warranted

Signalization at Highway 2 NB / Dunbow Road intersection is not warranted in all After Development horizon.

4. SUMMARY \& CONCLUSION

4.1 Background

Northbound left turn (NBL) movement of Highway 2 NB / Dunbow Road intersection is expected to operate with longer delays by 2042. Signalization of Highway 2 NB / Dunbow Road intersection is not warranted at all horizons due to Background traffic alone. Highway 2 SB / Dunbow Road intersection is expected to operate acceptably in all Background horizons.

4.2 After Development

Northbound left turn (NBL) movement of Highway 2 NB / Dunbow Road intersection is expected to operate with delays by 2032. However, signalization at Highway 2 NB / Dunbow Road intersection is not warranted in all After Development horizons. Highway 2 SB / Dunbow Road intersection is expected to operate acceptably in all After Development horizons.

Conclusion

Though the northbound left turn movement may experience some delays, the queue length is in order of one vehicle due to low traffic volume and therefore, signalization of the intersections is not warranted and not recommended.

[^5]
APPENDIX A
 Scope of Work

From:	Jason Dunn
To:	$\underline{\text { Gloria Shu }}$
Subject:	FW: Heritage Crossing - Hwy 2 / Dunbow Road Interchange Review
Date:	May 19, 2023 10:41:28 AM
Attachments:	image001.png

FYI

Jason Dunn, P.Eng. | Associate
Bunt \& Associates Engineering Ltd.
Suite $113,33411^{\text {th }}$ Avenue SE, Calgary, AB T2G 0Y2
d 5873497573 w www.bunteng.com

bunt \&associates $\sqrt{3}$ vas

Calgary |Edmonton | Kelowna |Vancouver |Victoria

From: Trevor Richelhof Trevor.Richelhof@gov.ab.ca
Sent: Tuesday, May 16, 2023 9:25 AM
To: Jason Dunn jdunn@bunteng.com
Cc: Jerry Lau Jerry.Lau@gov.ab.ca; Kristi Beunder Kristi@twpplanning.com
Subject: RE: Heritage Crossing - Hwy 2 / Dunbow Road Interchange Review

Hi Jason, scope looks good.
Thanks,

Trevor Richelhof CET, RPP, MCIP
Development and Planning Technologist / Acting Infrastructure Manager Southern Region, Construction \& Maintenance Division
Ministry of Transportation and Economic Corridors
Government of Alberta

Classification: Protected A
From: Jason Dunn idunn@bunteng.com
Sent: Monday, May 15, 2023 12:01 PM
To: Trevor Richelhof Trevor.Richelhof@gov.ab.ca
Cc: Jerry Lau < Jerry.Lau@gov.ab.ca>; Kristi Beunder Kristi@twpplanning.com
Subject: Heritage Crossing - Hwy 2 / Dunbow Road Interchange Review

```
CAUTION: This email has been sent from an external source. Treat hyperlinks and attachments in this email with care.
```

Trevor,

Further to our discussion on May 12, 2023, I have confirmed with Foothills County that there are no other current proposed developments that are either approved or under review, that aren't already
known to ATEC.

Therefore for the scope of this review, I proposed the following:

1. Use the existing count from the ATEC website.
2. Grow the movements at 2% pa (linear) at 5 year intervals for the next 25 years.
3. Review the background and after development scenarios for each 5 year interval.
4. Identify if the ramp intersections on Dunbow Road require signalisation at any of these scenarios.
5. Provide the information to ATEC in a technical memo.

Please let me know if this scope is acceptable.

Regards

Jason Dunn, P.Eng. | Associate
Bunt \& Associates Engineering Ltd.
Suite $113,33411^{\text {th }}$ Avenue SE, Calgary, AB T2G OY2
d 5873497573 w www.bunteng.com

Calgary | Edmonton | Kelowna | Vancouver | Victoria

APPENDIX B
ATEC Traffic Data

	To South
	2,339
A	2,189
B	39
C	0
D	29
E	82

	From South		
	1,660		
	Left	Thru	Right
	18	1,631	11
A	18	1,485	10
B	0	18	0
c	0	6	0
D	0	36	1
E	0	86	0

From East		
175		
Left	Thru	Right
8	56	111
8	54	110
0	1	1
0	0	0
0	1	0
0	0	0

NOTE:
Coloured line thickness corresponds to turning movement volume.

APPENDIX C

Synchro Reports

1: 2 Street SB \& Dunbow Road
05-25-2023 \&

	7							\dagger	p			\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢ \uparrow		${ }_{1}$	\uparrow					${ }^{7}$		
Traffic Volume (vph)	0	334	0	23	107	0	0	0	0	163	0	
Future Volume (vph)	0	334	0	23	107	0	0	0	0	163	0	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	0.95	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt												
Flt Protected				0.950						0.950		
Satd. Flow (prot)	0	3400	0	1785	1879	0	0	0	0	1684	0	
FIt Permitted				0.950						0.950		
Satd. Flow (perm)	0	3400	0	1785	1879	0	0	0	0	1684	0	
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		183.6			250.0			210.6			190.7	
Travel Time (s)		13.2			18.0			15.2			13.7	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (\%)	0\%	5\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	6\%	0\%	0\%
Adj. Flow (vph)	0	363	0	25	116	0	0	0	0	177	0	
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	363	0	25	116	0	0	0	0	177	0	
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Righ
Median Width(m)		3.5			3.5			3.5			3.5	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane												
Headway Factor	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01
Turning Speed (k/h)	25		15	25		15	25		15	25		15
Sign Control		Free			Free			Stop			Stop	
Intersection Summary												
Area Type: Other Control Type: Unsignalized												
Intersection Capacity Utilization 33.6\%Analysis Period (min) 15				ICU Level of Service A								

2: 2 Street NB \& Dunbow Road
05-25-2023 AM Peak Hour

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	\uparrow			\uparrow		\%					
Traffic Volume (vph)	265	232	0	0	107	0	23	0	0	0	0	
Future Volume (vph)	265	232	0	0	107	0	23	0	0	0	0	
deal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	00	

FIt Prot
0.050
$\begin{array}{llllll} & 0.950 & & & & 0.950\end{array}$
$\begin{array}{llllllllllll}\text { Satd. Flow (prot) } & 1733 & 1740 & 0 & 0 & 1879 & 0 & 1785 & 0 & 0 & 0 & 0 \\ \text { Flt Permitted } & 0.950 & & & & & & 0.950 & & & & \\ \text { satd Flow (perm) } & 1733 & 1740 & 0 & 0 & 1879 & 0 & 1785 & 0 & 0 & 0 & 0\end{array}$ Link Speed (kh) Link Distance (m)
(m)

	50	50	50	50
Link Distance (m)	250.0	206.2	204.3	183.4

$\begin{array}{lllllllllllll}13.2 & 14.7 \\ \text { Peak Hour Factor } & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92\end{array}$

Heavy Vehicles (\%)	3%	8%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Adj. Flow (vph)	288	252	0	0	116	0	25	0	0	0	0	0

Shared Lane Trafic (\%)
$\begin{array}{lrrrrrrrrrrrr} \\ \text { Lane Group Flow (vph) } & 288 & 252 & 0 & 0 & 116 & 0 & 25 & 0 & 0 & 0 & 0 & 0 \\ \text { Enter Blocked Intersection } & \text { No }\end{array}$ $\begin{array}{lrrrrrrrrrrrr}\text { Enter Blocked Intersection } & \text { No } \\ \text { Lane Alignment } & \text { Left } & \text { Left } & \text { Right } & \text { Left } & \text { Left } & \text { Right } & \text { Left } & \text { Left } & \text { Right } & \text { Left } & \text { Left } & \text { Right }\end{array}$

Median Width (m)	3.5	3.5	3.5	3.5

Headway Factor	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01
Turning Speed (khh)	25	Free	15	25		15	25		15	25		15

Sign Control
Intersection Summary
Area Type: $\quad 0$
onrsection Capacity Utilization 33.0%
Analysis Period (min) 15

1: 2 Street SB \& Dunbow Road
05-25-2023

	7							\dagger				\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢ \uparrow		7	\uparrow					${ }^{7}$		
Traffic Volume (vph)	0	212	0	9	81	0	0	0	0	206	0	
Future Volume (vph)	0	212	0	9	81	0	0	0	0	206	0	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	0.95	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt												
Flt Protected				0.950						0.950		
Satd. Flow (prot)	0	3535	0	1716	1824	0	0	0	0	1750	0	
FIt Permitted				0.950						0.950		
Satd. Flow (perm)	0	3535	0	1716	1824	0	0	0	0	1750	0	
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		183.6			250.0			210.6			190.7	
Travel Time (s)		13.2			18.0			15.2			13.7	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (\%)	0\%	1\%	0\%	4\%	3\%	0\%	0\%	0\%	0\%	2\%	0\%	0\%
Adj. Flow (vph)	0	230	0	10	88	0	0	0	0	224	0	
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	230	0	10	88	0	0	0	0	224	0	
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Righ
Median Width(m)		3.5			3.5			3.5			3.5	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane												
Headway Factor	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01
Turning Speed (k/h)	25		15	25		15	25		15	25		15
Sign Control		Free			Free			Stop			Stop	
Intersection Summary												
Area Type: Other Control Type: Unsignalized												
Intersection Capacity Utilization 30.6\%Analysis Period (min) 15				ICU Level of Service A								

Analysis Period (min) 15

2: 2 Street NB \& Dunbow Road
 ane Util. Factor
Flt Protected
atd. Flow (prot) $\quad 0.950$
FIt Permitted $\quad 1750$
$\begin{array}{lllllllllllll}\text { Satd. Flow (perm) } & 1750 & 1860 & 0 & 0 & 1824 & 0 & 1785 & 0 & 0 & 0 & 0 & 0\end{array}$ Link Speed (Kh)
Link Distance (m)
ravel Time (s)

183.4									
		250.0			206.2			204.3	14.7

	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (\%)	2%	1%	0%	0%	3%	0%	0%	0%	0%	0%	0%	

Lane Group Flow (vph)	134	321	0	0	76	0	22	0	0	0	0	0
Enter Blocked Intersection	No											

Enter Blocked Intersection	No		
Lane Alignment	Left	Left	Right

Headway Factor	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.0
Turning Speed (kh)	25	ree	15	25		15	25		15	25		
Sign Control		Free			Free			Stop			Stop	15

Sign Control
Intersection Summary \quad Other
Area Type:
onroi Type. Unsigity Utilization 30.0%
Analysis Period (min) 15
ICU Level of Service A
Analysis Period (min) 15

1: 2 Street SB \& Dunbow Road
05-25-2023

232 BG AM.syn
Synchro 11 Report

2: 2 Street NB \& Dunbow Road
2032 Backgroun

05-25-2023											AM Peak Hour	
	\rangle							\uparrow	p	\checkmark	\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	\uparrow			\uparrow		\%					
Traffic Volume (veh/h)	289	253	0	0	116	0	25	0	0	0	0	0
Future Volume (Veh/h)	289	253	0	0	116	0	25	0	0	0	0	0
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	314	275	0	0	126	0	27	0	0	0	0	
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	126			275			1029	1029	275	1029	1029	126
$\mathrm{vC1}$, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu , unblocked vol	126			275			1029	1029	275	1029	1029	126
tC , single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	78			100			85	100	100	100	100	100
cM capacity (veh/h)	1454			1300			178	185	769	178	185	930
Direction, Lane \#	EB 1	EB 2	WB 1	NB 1								
Volume Total	314	275	126	27								
Volume Left	314	0	0	27								
Volume Right	0	0	0	0								
cSH	1454	1700	1700	178								
Volume to Capacity	0.22	0.16	0.07	0.15								
Queue Length 95th (m)	6.6	0.0	0.0	4.2								
Control Delay (s)	8.2	0.0	0.0	28.8								
Lane LOS	A			D								
Approach Delay (s)	4.3		0.0	28.8								
Approach LOS				D								
Intersection Summary												
Average Delay			4.5									
Intersection Capacity Utilization			35.4\%		Level	Service			A			
Analysis Period (min)			15									

2032 BG AM.syn
Synchro 11 Report

1: 2 Street SB \& Dunbow Road
05-25-2023 _

	7			\dagger				4	p			\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		个 \uparrow		\%	\uparrow					${ }^{*}$		
Traffic Volume (vph)	0	232	0	10	89	0	0	0	0	224	0	
Future Volume (vph)	0	232	0	10	89	0	0	0	0	224	0	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	0.95	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt												
Flt Protected				0.950						0.950		
Satd. Flow (prot)	0	3535	0	1716	1824	0	0	0	0	1750	0	
Flt Permitted				0.950						0.950		
Satd. Flow (perm)	0	3535	0	1716	1824	0	0	0	0	1750	0	
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		183.6			250.0			210.6			190.7	
Travel Time (s)		13.2			18.0			15.2			13.7	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (\%)	0\%	1\%	0\%	4\%	3\%	0\%	0\%	0\%	0\%	2\%	0\%	0\%
Adj. Flow (vph)	0	252	0	11	97	0	0	0	0	243	0	
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	252	0	11	97	0	0	0	0	243	0	
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Righ
Median Width(m)		3.5			3.5			3.5			3.5	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane												
Headway Factor	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01
Turning Speed (k/h)	25		15	25		15	25		15	25		
Sign Control		Free			Free			Stop			Stop	
Intersection Summary												
Area Type:												
Control Type: Unsignalized												
Intersection Capacity Utilization 32.2\%Analysis Period (min) 15				ICU Level of Service A								

Analysis Period (min) 15

2: 2 Street NB \& Dunbow Road \begin{tabular}{l}
$05-25-2023$

\hline

$\rightarrow \downarrow \rightarrow 4$

\& EBL \& EBT \& EBR \& WBL \& WBT \& WBR \& NBL \& NBT \& NBR \& SBL \& SBT \& SBR

\hline Lane Group \& \uparrow \& \uparrow \& \& \& \uparrow \& \& $\$$ \& \& \& \& \&

\hline Lane Configurations \& 134 \& 322 \& 0 \& 0 \& 77 \& 0 \& 22 \& 0 \& 0 \& 0 \& 0 \& 0

Traffic Volume (vph) \& 134 \& 322 \& 0 \& 0 \& 77 \& 0 \& 22 \& 0 \& 0 \& 0 \& 0 \& 0

Future Volume (vph) \& 19000 \& 1900 \& 1900 \& 1900 \& 1900 \& 1900 \& 190 \& 190 \& 190 \& 1900 \& 1900 \& 1900
\end{tabular} $\begin{array}{lllllllllllll} & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\ \text { deal Flow (vphpl) } & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00\end{array}$ Lane Util. Factor

Flt Protected
Satd. Flow (prot) $\quad 0.950$
Flt Permitted $\quad 1750$
 Link Speed (kh) Link Distance (m) ravel Time (s)

Travel Time (s)		18.0			14.8			14.7			13.2	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92

| Heavy Vehicles (\%) | 2% | 1% | 0% | 0% | 3% | 0% | 0% | 0% | 0% | 0% | 0% | 0% |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Adj. Flow (vph) shared Lane Traffic (\%)

0												
Lane Group Flow (vph)	146	350	0	0	84	0	24	0	0	0	0	0
Enter Blocked Intersection	No											

Enter Blocked Intersection	No		
Lane Alignment	Left	Left	Right

	Left	Leff	Right	Leff	Leff	Right	Leff	Leff	Right	Left	Left
Lane Alignment	Righ										
Median Width (m)		3.5		3.5		3.5		3.5			

Median Wiath(m)	0.5	0.5	0.0
Link Offset (m)	0.0	0.0	0.0

Crosswalk Width(m)	4.8	4.8	4.8	4.8
Two way Left Turn Lane			4.8	

Headway Factor	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.0
Turning Speed (kh)	25		15	25		15	25		15	25		15

Turning Speed
Sign Control
Intersection Summary \quad Othe
Area Type:
onroi Type. Unsigity Utilization 322%
Analysis Period (min) 15
ICU Level of Service A
Analysis Period (min) 15

1: 2 Street SB \& Dunbow Road

$05-25-2023$									AM Peak Hou					
	\rangle						4	\uparrow			\downarrow	\downarrow		
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR		
Lane Configurations	${ }^{4}$	\uparrow			\uparrow		*							
Traffic Volume (veh/h)	313	274	0	0	126	0	27	0	0	0	0			
Future Volume (Veh/h)	313	274	0	0	126	0	27	0	0	0	0			
Sign Control		Free			Free			Stop			Stop			
Grade		0\%			0\%			0\%			0\%			
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92		
Hourly flow rate (vph)	340	298	0	0	137	0	29	0	0	0	0			
Pedestrians														
Lane Width (m)														
Walking Speed (m/s)														
Percent Blockage														
Right turn flare (veh)														
Median type		None			None									
Median storage veh)														
Upstream signal (m)														
pX, platoon unblocked														
vC , conflicting volume	137			298			1115	1115	298	1115	1115	137		
$\mathrm{VC1}$, stage 1 conf vol														
vC2, stage 2 conf vol														
vCu , unblocked vol	137			298			1115	1115	298	1115	1115	137		
tC , single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2		
$\mathrm{tC}, 2$ stage (s)														
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3		
po queue free \%	76			100			81	100	100	100	100	100		
cM capacity (veh/h)	1441			1275			153	160	746	153	160	917		
Direction, Lane \#	EB 1	EB 2	WB 1	NB 1										
Volume Total	340	298	137	29										
Volume Left	340	0	0	29										
Volume Right	0	0	0	0										
CSH	1441	1700	1700	153										
Volume to Capacity	0.24	0.18	0.08	0.19										
Queue Length 95th (m)	7.4	0.0	0.0	5.4										
Control Delay (s)	8.3	0.0	0.0	34.0										
Lane LOS	A			D										
Approach Delay (s)	4.4		0.0	34.0										
Approach LOS				D										
Intersection Summary														
Average Delay Intersection Capacity Utilization			4.7											
		Intersection Capacity Utilization Analysis Period (min)			37.3\%		U Level	f Service			A			
					15									

1: 2 Street SB \& Dunbow Road

Analysis Period (min)

ICU Level of Service

2: 2 Street NB \& Dunbow Road

05-25-2023											PM Peak Hour	
	7						4	\uparrow	P		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	\uparrow			\uparrow		${ }^{*}$					
Traffic Volume (veh/h)	146	348	0	0	83	0	23	0	0	0	0	
Future Volume (Veh/h)	146	348	0	0	83	0	23	0	0	0	0	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	159	378	0	0	90	0	25	0	0	0	0	
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC , conflicting volume	90			378			786	786	378	786	786	90
VC1, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu , unblocked vol	90			378			786	786	378	786	786	90
tC , single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
po queue free \%	89			100			91	100	100	100	100	100
cM capacity (veh/h)	1505			1192			287	292	673	287	292	973
Direction, Lane \#	EB 1	EB2	WB 1	NB 1								
Volume Total	159	378	90	25								
Volume Left	159	0	0	25								
Volume Right	0	0	0	0								
cSH	1505	1700	1700	287								
Volume to Capacity	0.11	0.22	0.05	0.09								
Queue Length 95th (m)	2.8	0.0	0.0	2.3								
Control Delay (s)	7.7	0.0	0.0	18.7								
Lane LOS	A			C								
Approach Delay (s)	2.3		0.0	18.7								
Approach LOS				C								
Intersection Summary												
Average Delay			2.6									
Intersection Capacity Utilization			33.7\%		Level	Service			A			
Analysis Period (min)			15									

2037 BG PM.syn
Synchro 11 Report

1: 2 Street SB \& Dunbow Road
05-25-2023

2042 BG AM.syn
Synchro 11 Report
05-25-2023

05-25-2023 AM Peak Hour												
	7	\rightarrow					4	\uparrow	$>$		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	\uparrow			\uparrow		\%					
Traffic Volume (veh/h)	337	295	0	0	136	0	29	0	0	0	0	
Future Volume (Veh/h)	337	295	0	0	136	0	29	0	0	0	0	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	366	321	0	0	148	0	32	0	0	0	0	
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	148			321			1201	1201	321	1201	1201	148
vC1, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu , unblocked vol	148			321			1201	1201	321	1201	1201	148
tC , single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
po queue free \%	74			100			76	100	100	100	100	100
cM capacity (veh/h)	1427			1250			131	139	724	131	139	904
Direction, Lane \#	EB 1	EB 2	WB 1	NB 1								
Volume Total	366	321	148	32								
Volume Left	366	0	0	32								
Volume Right	0	0	0	0								
cSH	1427	1700	1700	131								
Volume to Capacity	0.26	0.19	0.09	0.24								
Queue Length 95th (m)	8.2	0.0	0.0	7.2								
Control Delay (s)	8.4	0.0	0.0	41.2								
Lane LOS	A			E								
Approach Delay (s)	4.5		0.0	41.2								
Approach LOS				E								
Intersection Summary												
Average Delay			5.1									
Intersection Capacity Utilization			39.2\%		Level	Service			A			
Analysis Period (min)			15									

1: 2 Street SB \& Dunbow Road
05-25-2023

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		个 \uparrow		\%	\uparrow					${ }^{*}$		
Traffic Volume (veh/h)	0	270	0	11	104	0	0	0	0	262	0	0
Future Volume (Veh/h)	0	270	0	11	104	0	0	0	0	262	0	0
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	293	0	12	113	0	0	0	0	285	0	
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	113			293			430	430	146	284	430	113
$\mathrm{vC1}$, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu , unblocked vol	113			293			430	430	146	284	430	113
tC, single (s)	4.1			4.2			7.5	6.5	6.9	7.5	6.5	6.9
$\mathrm{tC}, 2$ stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	100			99			100	100	100	56	100	100
cM capacity (veh/h)	1489			1251			510	516	880	642	516	925
Direction, Lane \#	EB 1	EB 2	WB 1	WB 2	SB 1							
Volume Total	146	146	12	113	285							
Volume Left	0	0	12	0	285							
Volume Right	0	0	0	0	0							
CSH	1700	1700	1251	1700	642							
Volume to Capacity	0.09	0.09	0.01	0.07	0.44							
Queue Length 95th (m)	0.0	0.0	0.2	0.0	18.2							
Control Delay (s)	0.0	0.0	7.9	0.0	15.0							
Lane LOS			A		C							
Approach Delay (s)	0.0		0.8		15.0							
Approach LOS					C							
Intersection Summary												
Average Delay			6.2									
Intersection Capacity UtilizationAnalysis Period (min)			35.3\%	ICU Level of Service					A			
			15									

5-25-2023 $\quad \square \quad$

05-25-2023											PM Peak Hour	
	7						4	\uparrow	P			\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	\uparrow			\uparrow		\%					
Traffic Volume (veh/h)	157	375	0	0	90	0	25	0	0	0	0	
Future Volume (Veh/h)	157	375	0	0	90	0	25	0	0	0	0	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	171	408	0	0	98	0	27	0	0	0	0	
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC , conflicting volume	98			408			848	848	408	848	848	98
VC1, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu , unblocked vol	98			408			848	848	408	848	848	98
tC , single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
po queue free \%	89			100			90	100	100	100	100	100
cM capacity (veh/h)	1495			1162			259	266	648	259	266	963
Direction, Lane \#	EB 1	EB2	WB 1	NB 1								
Volume Total	171	408	98	27								
Volume Left	171	0	0	27								
Volume Right	0	0	0	0								
cSH	1495	1700	1700	259								
Volume to Capacity	0.11	0.24	0.06	0.10								
Queue Length 95th (m)	3.1	0.0	0.0	2.8								
Control Delay (s)	7.7	0.0	0.0	20.5								
Lane LOS	A			C								
Approach Delay (s)	2.3		0.0	20.5								
Approach LOS				C								
Intersection Summary												
Average Delay			2.7									
Intersection Capacity Utilization			35.3\%		Level	Service			A			
Analysis Period (min)			15									

1: 2 Street SB \& Dunbow Road
05-25-2023

05-25-2023

Pea												
	7						4	\uparrow			\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	\uparrow			\uparrow		\%					
Traffic Volume (veh/h)	362	317	0	0	146	0	32	0	0	0	0	
Future Volume (Veh/h)	362	317	0	0	146	0	32	0	0	0	0	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	393	345	0	0	159	0	35	0	0	0	0	
Pedestrians												
Lane Width (m)												
Walking Speed (m / s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC , conflicting volume	159			345			1290	1290	345	1290	1290	159
vC1, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu , unblocked vol	159			345			1290	1290	345	1290	1290	159
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
$\mathrm{tC}, 2$ stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	72			100			69	100	100	100	100	100
cM capacity (veh/h)	1414			1225			111	119	702	111	119	892
Direction, Lane \#	EB 1	EB 2	WB 1	NB 1								
Volume Total	393	345	159	35								
Volume Left	393	0	0	35								
Volume Right	0	0	0	0								
CSH	1414	1700	1700	111								
Volume to Capacity	0.28	0.20	0.09	0.31								
Queue Length 95th (m)	9.2	0.0	0.0	9.8								
Control Delay (s)	8.5	0.0	0.0	51.5								
Lane LOS	A			F								
Approach Delay (s)	4.5		0.0	51.5								
Approach LOS				F								
Intersection Summary												
Average Delay			5.5									
Intersection Capacity Utilization			41.1\%		Leve	Service			A			
Analysis Period (min)			15									

1: 2 Street SB \& Dunbow Road

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		个 \uparrow		\%	\uparrow					${ }^{7}$		
Traffic Volume (veh/h)	0	290	0	12	111	0	0	0	0	281	0	0
Future Volume (Veh/h)	0	290	0	12	111	0	0	0	0	281	0	0
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	315	0	13	121	0	0	0	0	305	0	
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC , conflicting volume	121			315			462	462	158	304	462	121
$\mathrm{vC1}$, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu , unblocked vol	121			315			462	462	158	304	462	121
tC , single (s)	4.1			4.2			7.5	6.5	6.9	7.5	6.5	6.9
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	100			99			100	100	100	51	100	100
cM capacity (veh/h)	1479			1228			484	494	866	620	494	914
Direction, Lane \#	EB 1	EB 2	WB 1	WB 2	SB 1							
Volume Total	158	158	13	121	305							
Volume Left	0	0	13	0	305							
Volume Right	0	0	0	0	0							
CSH	1700	1700	1228	1700	620							
Volume to Capacity	0.09	0.09	0.01	0.07	0.49							
Queue Length 95th (m)	0.0	0.0	0.3	0.0	21.7							
Control Delay (s)	0.0	0.0	8.0	0.0	16.3							
Lane LOS			A		C							
Approach Delay (s)	0.0		0.8		16.3							
Approach LOS					C							
Intersection Summary												
Average Delay			6.7									
Intersection Capacity Utilization			36.9\%		Leve	Service			A			
Analysis Period (min)			15									

PM Pea												
	7						4	4			\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	\uparrow			\uparrow		\%					
Traffic Volume (veh/h)	168	402	0	0	96	0	27	0	0	0	0	
Future Volume (Veh/h)	168	402	0	0	96	0	27	0	0	0	0	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	183	437	0	0	104	0	29	0	0	0	0	
Pedestrians												
Lane Width (m)												
Walking Speed (m / s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC , conficting volume	104			437			907	907	437	907	907	104
vC1, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu , unblocked vol	104			437			907	907	437	907	907	104
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
$\mathrm{tC}, 2$ stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	88			100			88	100	100	100	100	100
cM capacity (veh/h)	1488			1134			234	244	624	234	244	956
Direction, Lane \#	EB 1	EB 2	WB 1	NB 1								
Volume Total	183	437	104	29								
Volume Left	183	0	0	29								
Volume Right	0	0	0	0								
CSH	1488	1700	1700	234								
Volume to Capacity	0.12	0.26	0.06	0.12								
Queue Length 95th (m)	3.4	0.0	0.0	3.3								
Control Delay (s)	7.8	0.0	0.0	22.5								
Lane LOS	A			C								
Approach Delay (s)	2.3		0.0	22.5								
Approach LOS				C								
Intersection Summary												
Average Delay			2.8									
Intersection Capacity Utilization			36.9\%		Leve	Service			A			
Analysis Period (min)			15									

$\begin{aligned} & \text { 1: } 2 \text { Street SB \& Dunt } \\ & 05-25-2023 \end{aligned}$								2027 After Development $\begin{array}{r}\text { AM Peak Hour }\end{array}$				
	\Rightarrow	\rightarrow		t			4	\uparrow			\downarrow	\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢ \uparrow		${ }^{7}$	\uparrow					${ }_{1}$		
Traffic Volume (veh/h)	0	401	0	23	117	0	0	0	0	163	0	
Future Volume (Veh/h)	0	401	0	23	117	0	0	0	0	163	0	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	436	0	25	127	0	0	0	0	177	0	
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
VC , conflicting volume	127			436			613	613	218	395	613	127
$\mathrm{vC1}$, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu, unblocked vol	127			436			613	613	218	395	613	127
tC, single (s)	4.1			4.1			7.5	6.5	6.9	7.6	6.5	6.9
$\mathrm{tC}, 2$ stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.6	4.0	3.3
p0 queue free \%	100			98			100	100	100	66	100	100
cM capacity (veh/h)	1472			1134			374	401	792	521	401	906
Direction, Lane \#	EB 1	EB 2	WB1	WB 2	SB 1							
Volume Total	218	218	25	127	177							
Volume Left	0	0	25	0	177							
Volume Right	0	0	0	0	0							
cSH	1700	1700	1134	1700	521							
Volume to Capacity	0.13	0.13	0.02	0.07	0.34							
Queue Length 95th (m)	0.0	0.0	0.5	0.0	12.0							
Control Delay (s)	0.0	0.0	8.2	0.0	15.4							
Lane LOS			A		C							
Approach Delay (s)	0.0		1.4		15.4							
Approach LOS					C							
Intersection Summary												
Average Delay			3.8									
Intersection Capacity Utilization			36.2\%		Level	Service			A			
Analysis Period (min)			15									

Analysis Period (min)

2: 2 Street NB \& Dunbow Road
2027 After Developmen

05-25-2023											AM Peak Hour	
	7			\checkmark	\leftarrow			\uparrow	$>$		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{*}$	\uparrow			\uparrow		${ }_{1}$					
Traffic Volume (veh/h)	304	260	0	0	114	0	26	0	0	0	0	
Future Volume (Veh/h)	304	260	0	0	114	0	26	0	0	0	0	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	330	283	0	0	124	0	28	0	0	0	0	
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC , conflicting volume	124			283			1067	1067	283	1067	1067	12
vC1, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu , unblocked vol	124			283			1067	1067	283	1067	1067	12
tC , single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
po queue free \%	77			100			83	100	100	100	100	100
cM capacity (veh/h)	1457			1291			166	173	761	166	173	932
Direction, Lane \#	EB 1	EB 2	WB 1	NB 1								
Volume Total	330	283	124	28								
Volume Left	330	0	0	28								
Volume Right	0	0	0	0								
CSH	1457	1700	1700	166								
Volume to Capacity	0.23	0.17	0.07	0.17								
Queue Length 95th (m)	7.0	0.0	0.0	4.7								
Control Delay (s)	8.2	0.0	0.0	31.0								
Lane LOS	A			D								
Approach Delay (s)	4.4		0.0	31.0								
Approach LOS				D								
Intersection Summary												
Average Delay			4.7									
Intersection Capacity Utilization			36.2\%		U Level	Service			A			
Analysis Period (min)			15									

1: 2 Street SB \& Dunbow Road 55-25-2023 \&

	$\stackrel{ }{*}$			\checkmark			4	\uparrow	7			\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		个 \uparrow		7	\uparrow					${ }^{7}$		
Traffic Volume (veh/h)	0	253	0	9	126	0	0	0	0	206	0	
Future Volume (Veh/h)	0	253	0	9	126	0	0	0	0	206	0	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	275	0	10	137	0	0	0	0	224	0	
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
VC , conflicting volume	137			275			432	432	138	294	432	137
$\mathrm{vC1}$, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu, unblocked vol	137			275			432	432	138	294	432	137
tC, single (s)	4.1			4.2			7.5	6.5	6.9	7.5	6.5	6.9
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	100			99			100	100	100	65	100	100
cM capacity (veh/h)	1459			1271			509	515	892	631	515	893
Direction, Lane \#	EB 1	EB 2	WB 1	WB 2	SB 1							
Volume Total	138	138	10	137	224							
Volume Left	0	0	10	0	224							
Volume Right	0	0	0	0	0							
cSH	1700	1700	1271	1700	631							
Volume to Capacity	0.08	0.08	0.01	0.08	0.35							
Queue Length 95th (m)	0.0	0.0	0.2	0.0	12.8							
Control Delay (s)	0.0	0.0	7.9	0.0	13.8							
Lane LOS			A		B							
Approach Delay (s)	0.0		0.5		13.8							
Approach LOS					B							
Intersection Summary												
Average Delay			4.9									
Intersection Capacity Utilization			31.7\%		U Level	Service			A			
Analysis Period (min)			15									

2: 2 Street NB \& Dunbow Road
5-25-2023

05-25-2023											PM Peak Hour	
	\rangle			7	\leftarrow		4	\uparrow	7			\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	\uparrow			\uparrow		7					
Traffic Volume (veh/h)	147	312	0	0	103	0	32	0	0	0	0	0
Future Volume (Veh/h)	147	312	0	0	103	0	32	0	0	0	0	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	160	339	0	0	112	0	35	0	0	0	0	
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC , conflicting volume	112			339			771	771	339	771	771	112
VC1, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu , unblocked vol	112			339			771	771	339	771	771	112
tC , single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
po queue free \%	89			100			88	100	100	100	100	100
cM capacity (veh/h)	1478			1231			293	297	708	293	297	947
Direction, Lane \#	EB 1	EB 2	WB 1	NB 1								
Volume Total	160	339	112	35								
Volume Left	160	0	0	35								
Volume Right	0	0	0	0								
cSH	1478	1700	1700	293								
Volume to Capacity	0.11	0.20	0.07	0.12								
Queue Length 95th (m)	2.9	0.0	0.0	3.2								
Control Delay (s)	7.7	0.0	0.0	18.9								
Lane LOS	A			C								
Approach Delay (s)	2.5		0.0	18.9								
Approach LOS				C								
Intersection Summary												
Average Delay			2.9									
Intersection Capacity Utilization			31.7\%		Level	Service			A			
Analysis Period (min)			15									

1: 2 Street SB \& Dunbow Road
05-26-2023 \&

	7							\dagger				\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢ \uparrow		7	\uparrow					${ }^{7}$		
Traffic Volume (vph)	0	432	0	25	126	0	0	0	0	178	0	
Future Volume (vph)	0	432	0	25	126	0	0	0	0	178	0	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	0.95	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt												
Flt Protected				0.950						0.950		
Satd. Flow (prot)	0	3400	0	1785	1879	0	0	0	0	1684	0	
FIt Permitted				0.950						0.950		
Satd. Flow (perm)	0	3400	0	1785	1879	0	0	0	0	1684	0	
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		183.6			250.0			210.6			190.7	
Travel Time (s)		13.2			18.0			15.2			13.7	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (\%)	0\%	5\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	6\%	0\%	0\%
Adj. Flow (vph)	0	470	0	27	137	0	0	0	0	193	0	
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	470	0	27	137	0	0	0	0	193	0	
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Righ
Median Width(m)		3.5			3.5			3.5			3.5	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane												
Headway Factor	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01
Turning Speed (k/h)	25		15	25		15	25		15	25		15
Sign Control		Free			Free			Stop			Stop	
Intersection Summary												
Area Type: Other Control Type: Unsignalized												
Intersection Capacity Utilization 38.0\%Analysis Period (min) 15				ICU Level of Service A								

Analysis Period (min) 15

2: 2 Street NB \& Dunbow Road
05-26-2023

	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Group	\uparrow	\uparrow			\uparrow		$\$$					
Lane Configurations	328	281	0	0	123	0	28	0	0	0	0	0
Traffic Volume (vph)	328	281	0	0	123	0	28	0	0	0	0	0
Future Volume (vph)	1900	1900	1900	1900	1900	190	190	190	190	190	190	1900

Flt Protected
atd. Flow (prot) 0.950
$\begin{array}{llllllllllll} & 1733 & 1740 & 0 & 0 & 1879 & 0 & 0.950 & 1785 & 0 & 0 & 0 \\ 0\end{array}$
Satd. Flow (perm) $\quad 1733$
Link Speed (kh)
Link Distance (m)

ink Distance (m)		250.0			206.2			204.3			183.4	
ravel Time (s)		18.0			14.8			14.7			13.2	
eak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.9

Heavy Vehicles (\%)	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92

| Adj. Flow (vph) | 357 | 305 | 0 | 0 | 134 | 0 | 30 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | ---: | ---: | ---: | ---: | ---: | Shared Lane Traffic

$\begin{array}{lrrrrrrrrrrrrr} \\ \text { Shared Lane Traftic (\%) } & 357 & 305 & 0 & 0 & 134 & 0 & 30 & 0 & 0 & 0 & 0 & 0 \\ \text { Lane Group Flow (vph) } & \text { Enter Blocked Intersection } & \text { No }\end{array}$ $\begin{array}{lrrrrrrrrrrrr}\text { Enter Blocked Intersection } & \text { No } \\ \text { Lane Alignment } & \text { Left } & \text { Left } & \text { Right } & \text { Left } & \text { Left } & \text { Right } & \text { Left } & \text { Left } & \text { Right } & \text { Left } & \text { Left } & \text { Right }\end{array}$

Link Offset(m)	0.0	0.0	0.0	4.8
Crosswalk Width(m)	4.8	4.8	4.8	4.8
Two way Left Turn Lane				

Headway Factor	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.0
Turning Speed (kh)	25		15	25		15	25		15	25		15

Turning Speed
Sign Control
sign Control
Free

Intersection Summary	
Area Type: Other	

Area Type:
onrroction Capacity Utilization 38.0%
Analysis Period (min) 15
ICU Level of Service A
Analysis Period (min) 15

1: 2 Street SB \& Dunbow Road
5-26-2023 \&

	\%			\checkmark			4	\uparrow	p		\downarrow	\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		个个		7	\uparrow					${ }^{7}$		
Traffic Volume (veh/h)	0	273	0	10	134	0	0	0	0	224	0	
Future Volume (Veh/h)	0	273	0	10	134	0	0	0	0	224	0	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	297	0	11	146	0	0	0	0	243	0	
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
VC , conflicting volume	146			297			465	465	148	316	465	146
vC1, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu, unblocked vol	146			297			465	465	148	316	465	146
tC, single (s)	4.1			4.2			7.5	6.5	6.9	7.5	6.5	6.9
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	100			99			100	100	100	60	100	100
cM capacity (veh/h)	1448			1247			482	493	878	609	493	881
Direction, Lane \#	EB 1	EB 2	WB 1	WB 2	SB 1							
Volume Total	148	148	11	146	243							
Volume Left	0	0	11	0	243							
Volume Right	0	0	0	0	0							
cSH	1700	1700	1247	1700	609							
Volume to Capacity	0.09	0.09	0.01	0.09	0.40							
Queue Length 95th (m)	0.0	0.0	0.2	0.0	15.3							
Control Delay (s)	0.0	0.0	7.9	0.0	14.8							
Lane LOS			A		B							
Approach Delay (s)	0.0		0.6		14.8							
Approach LOS					B							
Intersection Summary												
Average Delay			5.3									
Intersection Capacity Utilization			33.3\%		U Level	Service			A			
Analysis Period (min)			15									

2: 2 Street NB \& Dunbow Road
5-26-2023 \&

05-26-2023											PM Peak Hour	
	7			\checkmark	\leftarrow			\uparrow	$>$		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	\uparrow			\uparrow		${ }^{*}$					
Traffic Volume (veh/h)	158	339	0	0	110	0	34	0	0	0	0	
Future Volume (Veh/h)	158	339	0	0	110	0	34	0	0	0	0	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	172	368	0	0	120	0	37	0	0	0	0	
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC , conflicting volume	120			368			832	832	368	832	832	120
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu , unblocked vol	120			368			832	832	368	832	832	120
tC , single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
po queue free \%	88			100			86	100	100	100	100	100
cM capacity (veh/h)	1468			1202			265	271	682	265	271	937
Direction, Lane \#	EB 1	EB 2	WB 1	NB 1								
Volume Total	172	368	120	37								
Volume Left	172	0	0	37								
Volume Right	0	0	0	0								
CSH	1468	1700	1700	265								
Volume to Capacity	0.12	0.22	0.07	0.14								
Queue Length 95th (m)	3.2	0.0	0.0	3.8								
Control Delay (s)	7.8	0.0	0.0	20.8								
Lane LOS	A			C								
Approach Delay (s)	2.5		0.0	20.8								
Approach LOS				C								
Intersection Summary												
Average Delay			3.0									
Intersection Capacity Utilization			33.3\%		U Level	Service			A			
Analysis Period (min)			15									

Analysis Period (min)

2: 2 Street NB \& Dunbow Road

2037 After Developmen $\rightarrow \rightarrow \downarrow \rightarrow 4 \downarrow$ | | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Movement | M | \uparrow | | | \uparrow | | 0 | | | | | |
| Lane Configurations | 352 | 302 | 0 | 0 | 133 | 0 | 30 | 0 | 0 | 0 | 0 | 0 |
| Traffic Volume (veh/h) | 352 | 302 | 0 | 0 | 133 | 0 | 30 | 0 | 0 | 0 | 0 | 0 |
| Future Volume (Veh/h) | | Free | | | Free | | | Stop | | | Stop | |
| Sign Control | 0.9 | | | 0% | | | 0% | | | 0% | | |
| Grade | | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |
| Peak Hour Factor | 0.92 | 0.92 | | | | | | | | | | |
| Hourly flow rate (vph) | 383 | 328 | 0 | 0 | 145 | 0 | 33 | 0 | 0 | 0 | 0 | 0 |
| Pedestrians | | | | | | | | | | | | |

Lane Width (m)
Walking Speed (m / s)
Rercent Blockage
Median type
Median storage veh)
Upstream signal (m)
pX, platoon unblocked
pX , platoon unblocked
vC, conflicting volume
VC , conficting volume
vC 1 stage 1 conf vol
vC1, stage 1 conf vol
vC2, stage 2 conf vol

$v C 2$, stage 2 conf vol											
vCu , unblocked vol	145			328		1239	1239	328	1239	1239	145
tC, single (s)	4.1			4.1		7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)											
tF (s)	2.2			2.2		3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	73			100		73	100	100	100	100	100
cM capacity (veh/h)	1431			1243		122	130	718	122	130	908
Direction, Lane \#	EB 1	EB 2	WB 1	NB 1							
Volume Total	383	328	145	33							
Volume Left	383	0	0	33							
Volume Right	0	0	0	0							
cSH	1431	1700	1700	122							
Volume to Capacity	0.27	0.19	0.09	0.27							
Queue Length 95th (m)	8.7	0.0	0.0	8.2							
Control Delay (s)	8.4	0.0	0.0	45.1							
Lane LOS	A			E							
Approach Delay (s)	4.5		0.0	45.1							
Approach LOS				E							
Intersection Summary											
Average Delay			5.3								
Intersection Capacity Utilization			39.8\%		ICU Level of Service			A			
Analysis Period (min)			15								

2037 AD AM.syn
Synchro 11 Report

1: 2 Street SB \& Dunbow Road

 Hourly flow rate (vph)
Pedestrians Width (m)
Walking Speed (m / s)
Percent Blockage
Right turn flare (veh

Right turn flare (veh)											
Median type		None			None						
Median storage veh)											
Upstream signal (m)											
pX, platoon unblocked											
vC , conflicting volume	153			317		492	492	158	334	492	153
vC1, stage 1 conf vol											
$\mathrm{vC2}$, stage 2 conf vol											
vCu , unblocked vol	153			317		492	492	158	334	492	153
tC , single (s)	4.1			4.2		7.5	6.5	6.9	7.5	6.5	6.9
tC, 2 stage (s)											
tF (s)	2.2			2.2		3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	100			99		100	100	100	55	100	100
cM capacity (veh/h)	1440			1226		461	476	865	592	476	872
Direction, Lane \#	EB 1	EB 2	WB 1	WB 2	SB 1						
Volume Total	158	158	11	153	264						
Volume Left	0	0	11	0	264						
Volume Right	0	0	0	0	0						
cSH	1700	1700	1226	1700	592						
Volume to Capacity	0.09	0.09	0.01	0.09	0.45						
Queue Length 95th (m)	0.0	0.0	0.2	0.0	18.3						
Control Delay (s)	0.0	0.0	8.0	0.0	15.9						
Lane LOS			A		C						
Approach Delay (s)	0.0		0.5		15.9						
Approach LOS					C						
Intersection Summary											
Average Delay			5.7								
Intersection Capacity Utilization			34.9\%		CU Level of Service			A			
Analysis Period (min)			15								

Analysis Period (min)

2: 2 Street NB \& Dunbow Road
5-26-2023 \& Dun Road

05-26-2023											PM Peak Hour	
	7			\checkmark	\leftarrow			\uparrow	$>$		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SB	SBR
Lane Configurations	${ }^{*}$	\uparrow			\uparrow		${ }^{*}$					
Traffic Volume (veh/h)	170	365	0	0	116	0	35	0	0	0		
Future Volume (Veh/h)	170	365	0	0	116	0	35	0	0	0		
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	185	397	0	0	126	0	38	0	0	0		
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC , conflicting volume	126			397			893	893	397	893	89	126
vC1, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu , unblocked vol	126			397			893	893	397	893	89	126
tC , single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
po queue free \%	87			100			84	100	100	100	10	100
cM capacity (veh/h)	1460			1173			239	247	657	239	24	930
Direction, Lane \#	EB 1	EB 2	WB 1	NB 1								
Volume Total	185	397	126	38								
Volume Left	185	0	0	38								
Volume Right	0	0	0	0								
CSH	1460	1700	1700	239								
Volume to Capacity	0.13	0.23	0.07	0.16								
Queue Length 95th (m)	3.5	0.0	0.0	4.4								
Control Delay (s)	7.8	0.0	0.0	22.9								
Lane LOS	A			C								
Approach Delay (s)	2.5		0.0	22.9								
Approach LOS				C								
Intersection Summary												
Average Delay			3.1									
Intersection Capacity Utilization			34.9\%		U Level	Service			A			
Analysis Period (min)			15									

2037 AD PM.syn
Synchro 11 Report

$\begin{aligned} & \text { 1: } 2 \text { Street SB \& Dunk } \\ & 05-26-2023 \end{aligned}$								2042 After Developmen AM Peak Hour				
	7			\checkmark				4	p	\checkmark	\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢ \uparrow		7	\uparrow					\%		
Trafic Volume (veh/h)	0	493	0	29	146	0	0	0	0	207	0	
Future Volume (Veh/h)	0	493	0	29	146	0	0	0	0	207	0	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	536	0	32	159	0	0	0	0	225	0	
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
VC , conflicting volume	159			536			759	759	268	491	759	159
$\mathrm{vC1}$, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu, unblocked vol	159			536			759	759	268	491	759	159
tC, single (s)	4.1			4.1			7.5	6.5	6.9	7.6	6.5	6.9
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.6	4.0	3.3
p0 queue free \%	100			97			100	100	100	49	100	100
cM capacity (veh/h) 1	1433			1042			292	328	736	441	328	864
Direction, Lane \#	EB 1	EB 2	WB 1	WB 2	SB 1							
Volume Total	268	268	32	159	225							
Volume Left	0	0	32	0	225							
Volume RightcSH	0	0	0	0	0							
	1700	1700	1042	1700	441							
Volume to Capacity	0.16	0.16	0.03	0.09	0.51							
Queue Length 95th (m)		0.0	0.8	0.0	22.6							
Control Delay (s)		0.0	8.6	0.0	21.4							
Lane LOS			A		C							
Approach Delay (s)	0.0		1.4		21.4							
Approach LOS					C							
Intersection Summary												
Average Delay			5.3									
Intersection Capacity UtilizationAnalysis Period (min)			41.7\%		Level	Service			A			
			15									

Analysis Period (min)

2: 2 Street NB \& Dunbow Road
2042 After Developmen $\rightarrow \rightarrow \downarrow \rightarrow 4 \rightarrow \downarrow$
 $\begin{array}{lrrrrrrrrrrrr}\text { Grade } & & 0.92 & 0.92 \\ \text { eak Four Factor } & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 \\ \text { Hourly flow rate (vph) } & 409 & 351 & 0 & 0 & 155 & 0 & 35 & 0 & 0 & 0 & 0 & 0 \\ \text { Pedestrians } & & & & & & & & & & & & \end{array}$ Pedestrians
Walking Speed (m / s)
Right turn flare (veh)
Median type
Median storage veh)
Upstream signal (m)

2042 AD AM.syn
Synchro 11 Report

1: 2 Street SB \& Dunbow Road

Grade $\begin{array}{lrrrrrrrrrrrr} & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 \\ \text { Hoarly Hour Factor rate (vph) } & 0 & 338 & 0 & 12 & 162 & 0 & 0 & 0 & 0 & 285 & 0 & 0\end{array}$ Pedestrians
Walking Speed (m / s)
Percent Blockage
Right turn flare (veh)

Right turn flare (veh)											
Median type		None			None						
Median storage veh)											
Upstream signal (m)											
pX , platoon unblocked											
vC , conflicting volume	162			338		524	524	169	355	524	162
VC1, stage 1 conf vol											
$\mathrm{vC2}$, stage 2 conf vol											
vCu , unblocked vol	162			338		524	524	169	355	524	162
tC , single (s)	4.1			4.2		7.5	6.5	6.9	7.5	6.5	6.9
tC, 2 stage (s)											
tF (s)	2.2			2.2		3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	100			99		100	100	100	50	100	100
cM capacity (veh/h)	1429			1204		437	456	852	571	456	861
Direction, Lane \#	EB 1	EB 2	WB 1	WB 2	SB 1						
Volume Total	169	169	12	162	285						
Volume Left	0	0	12	0	285						
Volume Right	0	0	0	0	0						
cSH	1700	1700	1204	1700	571						
Volume to Capacity	0.10	0.10	0.01	0.10	0.50						
Queue Length 95th (m)	0.0	0.0	0.2	0.0	22.2						
Control Delay (s)	0.0	0.0	8.0	0.0	17.4						
Lane LOS			A		C						
Approach Delay (s)	0.0		0.6		17.4						
Approach LOS					C						
Intersection Summary											
Average Delay			6.3								
Intersection Capacity Utilization			36.4\%		U Level of Service			A			
Analysis Period (min)			15								

Analysis Period (min)

05-26-2023											PM Peak Hour	
	7			\dagger			4	\dagger			\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{*}$	\uparrow			\uparrow		${ }^{*}$					
Traffic Volume (veh/h)	181	392	0	0	123	0	37	0	0	0	0	
Future Volume (Veh/h)	181	392	0	0	123	0	37	0	0	0	0	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	197	426	0	0	134	0	40	0	0	0	,	
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC , conflicting volume	134			426			954	954	426	954	954	134
$\mathrm{VC1}$, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu , unblocked vol	134			426			954	954	426	954	954	134
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
$\mathrm{tC}, 2$ stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
po queue free \%	86			100			81	100	100	100	100	100
cM capacity (veh/h)	1451			1144			215	225	633	215	225	920
Direction, Lane \#	EB 1	EB2	WB 1	NB 1								
Volume Total	197	426	134	40								
Volume Left	197	0	0	40								
Volume Right	0	0	0	0								
CSH	1451	1700	1700	215								
Volume to Capacity	0.14	0.25	0.08	0.19								
Queue Length 95th (m)	3.8	0.0	0.0	5.3								
Control Delay (s)	7.9	0.0	0.0	25.5								
Lane LOS	A			D								
Approach Delay (s)	2.5		0.0	25.5								
Approach LOS				D								
Intersection Summary												
Average Delay			3.2									
Intersection Capacity Utilization			36.4\%		U Level	Service			A			
Analysis Period (min)			15									

Analysis Period (min)

2: 2 Street NB \& Dunbow Road

2047 After Developmen $\rightarrow \rightarrow \downarrow \rightarrow 4 \rightarrow \downarrow$ | | | | | | | | | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations | \% | \uparrow | | | \uparrow | | $\$$ | | | | | |
| Traffic Volume (veh/h) | 401 | 345 | 0 | 0 | 153 | 0 | 35 | 0 | 0 | 0 | 0 | 0 |
| Future Volume (Veh/h) | 401 | 345 | 0 | 0 | 153 | 0 | 35 | 0 | 0 | 0 | 0 | 0 |
| Sign Control | | Free | | | Free | | | Stop | | | Stop | |
| Grade | | 0% | | | 0% | | | 0% | | | 0% | |
| Peak Hour Factor | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |
| Hourly flow rate (vph) | 436 | 375 | 0 | 0 | 166 | 0 | 38 | 0 | 0 | 0 | 0 | 0 |
| Pedestrians | | | | | | | | | | | | |

Pedestrians
Walking Spled (m / s)
Right turn flare (veh)
Median type
Median storage veh)
Upstream signal (m)

Upstream signal (m)										
pX, platoon unblocked										
vC , conflicting volume	166			375	1413	1413	375	1413	1413	166
VC1, stage 1 conf vol										
$\mathrm{vC2}$, stage 2 conf vol										
vCu , unblocked vol	166			375	1413	1413	375	1413	1413	166
tC , single (s)	4.1			4.1	7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)										
tF (s)	2.2			2.2	3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	69			100	57	100	100	100	100	100
cM capacity (veh/h)	1406			1195	89	96	676	89	96	884
Direction, Lane \#	EB 1	EB 2	WB 1	NB 1						
Volume Total	436	375	166	38						
Volume Left	436	0	0	38						
Volume Right	0	0	0	0						
cSH	1406	1700	1700	89						
Volume to Capacity	0.31	0.22	0.10	0.43						
Queue Length 95th (m)	10.7	0.0	0.0	14.1						
Control Delay (s)	8.7	0.0	0.0	73.2						
Lane LOS	A			F						
Approach Delay (s)	4.7		0.0	73.2						
Approach LOS				F						

Intersection Summary

Average Delay	6.5
tersection Capacity Utilization	15

Intersection Capacity Utilization $\quad 43.6 \%$
Analysis Period (min)

: 2 Street SB \& Dunbow Road

 $\begin{array}{lrrrrrrrrrrrr}\text { Peak Hour Factor } & 0.52 & 0.50 & 0 & 13 & 170 & 0 & 0 & 0 & 0 & 305 & 0 & 0\end{array}$ Pedestrians Width (m)
Walking Speed (m / s)
Percent Blockage
Right turn flare (veh)

Analysis Period (min)

Upstream signal (m)
VC , conflicting volume
$\mathrm{vC1}$, stage 1 conf vol
$\mathrm{vC2}$, stage 2 conf vol
C , single (s)
$\mathrm{C}, 2$ stage (s)
F (s)
M capacity (veh/h) 1420

[^6]2: 2 Street NB \& Dunbow Road
2047 After Developmen

05-26-2023 PM Peak Hour												
	7	\rightarrow					4	\uparrow	$>$		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	\uparrow			\uparrow		\%					
Traffic Volume (veh/h)	192	419	0	0	129	0	39	0	0	0	0	
Future Volume (Veh/h)	192	419	0	0	129	0	39	0	0	0	0	
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	209	455	0	0	140	0	42	0	0	0	0	
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	140			455			1013	1013	455	1013	1013	140
vC1, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu , unblocked vol	140			455			1013	1013	455	1013	1013	140
tC , single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
po queue free \%	86			100			78	100	100	100	100	100
cM capacity (veh/h)	1443			1116			195	206	609	195	206	913
Direction, Lane \#	EB 1	EB 2	WB 1	NB 1								
Volume Total	209	455	140	42								
Volume Left	209	0	0	42								
Volume Right	0	0	0	0								
cSH	1443	1700	1700	195								
Volume to Capacity	0.14	0.27	0.08	0.22								
Queue Length 95th (m)	4.1	0.0	0.0	6.3								
Control Delay (s)	7.9	0.0	0.0	28.5								
Lane LOS	A			D								
Approach Delay (s)	2.5		0.0	28.5								
Approach LOS				D								
Intersection Summary												
Average Delay			3.4									
Intersection Capacity Utilization			38.1\%		Level	Service			A			
Analysis Period (min)			15									

2047 AD PM.syn
Synchro 11 Report

APPENDIX D

Signal Warrants

Traffic Signal Warrant Analysis

Lane Configuration									
		¢ ¢ x	$\begin{aligned} & \stackrel{5}{7} \\ & \text { w } \\ & \stackrel{5}{2} \end{aligned}$			$\begin{aligned} & \stackrel{\rightharpoonup}{\sim} \\ & \approx \\ & F \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{v} \\ & \stackrel{y}{v} \end{aligned}$		
Dunbow	WB			1					1
Dunbow	EB	1		1					1
2 Street NB	NB	1							
2 Street NB	SB								
Are the 2 Street NB NB right turns significantly impeded by through movements? (y/n) Are the 2 Street NB SB right turns significantly impeded by through movements? (y / n)							n		
							y		

Road Authority:	
City:	Foothills County
Analysis Date:	2023-05-25
Count Date:	2022 Oct 19, Wed
Date Entry Format:	yyyy-mm-dd

Traffic Signal Warrant Analysis

Road Authority: City:	
	Foothills County
Analysis Date:	2023-05-25
Count Date:	2022 Oct 19, Wed
Date Entry Format:	yyyy-mm-dd

Lane Configuration									
		$\begin{aligned} & \leftrightarrows \\ & \stackrel{\rightharpoonup}{\breve{x}} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{2} \\ & \text { w } \\ & \text { E } \end{aligned}$		$\begin{aligned} & \vec{~} \\ & \underset{\sim}{t} \\ & \pm \\ & \underset{F}{ \pm} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\sim} \\ & \approx \\ & \stackrel{\rightharpoonup}{F} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\sim} \\ & \stackrel{\rightharpoonup}{x} \\ & \text { a } \end{aligned}$		
Dunbow	WB			1					1
Dunbow	EB	1		1					1
2 Street NB	NB	1							
2 Street NB	SB								
Are the 2 Street NB NB right turns significantly impeded by through movements? (y/n) Are the 2 Street NB SB right turns significantly impeded by through movements? $(\mathrm{y} / \mathrm{n})$							n		
							y		

Demographics		
Elem. School/Mobility Challenged	$(\mathrm{y} / \mathrm{n})$	n
Senior's Complex	$(\mathrm{y} / \mathrm{n})$	n
Pathway to School	$(\mathrm{y} / \mathrm{n})$	n
Metro Area Population	$(\#)$	22,766
Central Business District	$(\mathrm{y} / \mathrm{n})$	n

Traffic Signal Warrant Spreadsheet - v3H© 2007 Transportation Association of Canada

Traffic Signal Warrant Analysis

Lane Configuration									
		$\begin{aligned} & \leftrightarrows \\ & \stackrel{\rightharpoonup}{\breve{x}} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{2} \\ & \text { w } \\ & \text { E } \end{aligned}$		$\begin{aligned} & \vec{~} \\ & \underset{\sim}{t} \\ & \pm \\ & \underset{F}{ \pm} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\sim} \\ & \approx \\ & \stackrel{\rightharpoonup}{F} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\sim} \\ & \stackrel{\rightharpoonup}{x} \\ & \text { a } \end{aligned}$		
Dunbow	WB			1					1
Dunbow	EB	1		1					1
2 Street NB	NB	1							
2 Street NB	SB								
Are the 2 Street NB NB right turns significantly impeded by through movements? (y/n) Are the 2 Street NB SB right turns significantly impeded by through movements? $(\mathrm{y} / \mathrm{n})$							n		
							y		

Demographics		
Elem. School/Mobility Challenged	$(\mathrm{y} / \mathrm{n})$	n
Senior's Complex	$(\mathrm{y} / \mathrm{n})$	n
Pathway to School	$(\mathrm{y} / \mathrm{n})$	n
Metro Area Population	$(\#)$	22,766
Central Business District	$(\mathrm{y} / \mathrm{n})$	n

Traffic Signal Warrant Spreadsheet - v3H© 2007 Transportation Association of Canada

Traffic Signal Warrant Analysis

Lane Configuration									
		$\begin{aligned} & \leftrightarrows \\ & \stackrel{\rightharpoonup}{\breve{x}} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{2} \\ & \text { w } \\ & \text { E } \end{aligned}$		$\begin{aligned} & \vec{~} \\ & \underset{\sim}{t} \\ & \pm \\ & \underset{F}{ \pm} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\sim} \\ & \approx \\ & \stackrel{\rightharpoonup}{F} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\sim} \\ & \stackrel{\rightharpoonup}{x} \\ & \text { a } \end{aligned}$		
Dunbow	WB			1					1
Dunbow	EB	1		1					1
2 Street NB	NB	1							
2 Street NB	SB								
Are the 2 Street NB NB right turns significantly impeded by through movements? (y/n) Are the 2 Street NB SB right turns significantly impeded by through movements? $(\mathrm{y} / \mathrm{n})$							n		
							y		

Demographics		
Elem. School/Mobility Challenged	$(\mathrm{y} / \mathrm{n})$	n
Senior's Complex	$(\mathrm{y} / \mathrm{n})$	n
Pathway to School	$(\mathrm{y} / \mathrm{n})$	n
Metro Area Population	$(\#)$	22,766
Central Business District	$(\mathrm{y} / \mathrm{n})$	n

Traffic Signal Warrant Spreadsheet - v3H© 2007 Transportation Association of Canada

Traffic Signal Warrant Analysis

Road Authority: City:	
	Foothills County
Analysis Date:	2023-05-25
Count Date:	2022 Oct 19, Wed
Date Entry Format:	yyyy-mm-dd

Lane Configuration									
		$\begin{aligned} & \leftrightarrows \\ & \stackrel{\rightharpoonup}{\breve{x}} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{2} \\ & \text { w } \\ & \text { E } \end{aligned}$		$\begin{aligned} & \vec{~} \\ & \underset{\sim}{t} \\ & \pm \\ & \underset{F}{ \pm} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\sim} \\ & \approx \\ & \stackrel{\rightharpoonup}{F} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\sim} \\ & \stackrel{\rightharpoonup}{x} \\ & \text { a } \end{aligned}$		
Dunbow	WB			1					1
Dunbow	EB	1		1					1
2 Street NB	NB	1							
2 Street NB	SB								
Are the 2 Street NB NB right turns significantly impeded by through movements? (y/n) Are the 2 Street NB SB right turns significantly impeded by through movements? $(\mathrm{y} / \mathrm{n})$							n		
							y		

Demographics		
Elem. School/Mobility Challenged	$(\mathrm{y} / \mathrm{n})$	n
Senior's Complex	$(\mathrm{y} / \mathrm{n})$	n
Pathway to School	$(\mathrm{y} / \mathrm{n})$	n
Metro Area Population	$(\#)$	22,766
Central Business District	$(\mathrm{y} / \mathrm{n})$	n

Traffic Signal Warrant Spreadsheet - $\mathbf{v} 3 \mathrm{H}$ © 2007 Transportation Association of Canada

Traffic Signal Warrant Analysis

Lane Configuration									
		$\begin{aligned} & \leftrightarrows \\ & \underset{\sim}{\breve{u}} \end{aligned}$	$\begin{aligned} & \text { F } \\ & \text { ※ } \\ & \text { E } \end{aligned}$		$\stackrel{7}{ \pm}$ $\stackrel{y}{*}$ \pm	$\begin{aligned} & \stackrel{\rightharpoonup}{2} \\ & \text { o } \\ & \stackrel{\rightharpoonup}{F} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\sim} \\ & \stackrel{\rightharpoonup}{x} \\ & \hline \end{aligned}$		
Dunbow	WB			1					1
Dunbow	EB	1		1					1
2 Street NB	NB	1							
2 Street NB	SB								
Are the 2 Street NB NB right turns significantly impeded by through movements? (y/n) Are the 2 Street NB SB right turns significantly impeded by through movements? $(\mathrm{y} / \mathrm{n})$							n		
							y		

Demographics		
Elem. School/Mobility Challenged	$(\mathrm{y} / \mathrm{n})$	n
Senior's Complex	$(\mathrm{y} / \mathrm{n})$	n
Pathway to School	$(\mathrm{y} / \mathrm{n})$	n
Metro Area Population	$(\#)$	22,766
Central Business District	$(\mathrm{y} / \mathrm{n})$	n

Traffic Signal Warrant Spreadsheet - v3H© 2007 Transportation Association of Canada

HERTAGE CROSSING

L1 - OPEN SPACE MASTER PLAN
L2 - DETAIL PLAN 1
L3 - DETAIL PLAN 2
L4 - MAIN ENTRY ELEVATION
L5 - NORTH PROPERTY LINE TRANSITION
L6 - NORTH PROPERTY LINE TRANSITIO N ALONG STO RMWATER POND
L7 - DETAIL ELEVATIONS

HERITAGE CROSSING | OPEN SPACE MASTER PLAN

HERITAGE CROSSING | DETAIL PLAN 1

Key Plan

Legend

Trees
Shin Shb

- Perennials

Bench
"-.." Property Line

1. Main Entry
2. Entry Feature
3. Residential Area
4. Boulevard Trees

5a. 1.5 m Wide Concrete Sidewalk
5b. 2 m Wide Asphalt Pathway
6. Planting Bed
7. Grass Berm
8. Grass Berm with Planting
9. Pickle ball Court
10. Community Board
11. Corner Plaza
12. Seating Node
13. Crosswalk

Section 1-1

Key Plan

${ }_{N}$
Section 2-2

HERITAGE CROSSING | NORTH PROPERTY LINE TRANSITION ALONG STORMWATER POND

N
Section 3-3

HERITAGE CROSSING | DETAIL ELEVATIONS

DETAIL 1 - BOLLARD
DETAIL 2 - BOLLARD WITH FRAME

DETAIL 3 - ENTRY FEATURE

REPORT

Township Planning + Design Inc.

Foothills County ASP
Conceptual Design Report

JANUARY 2022

CONFIDENTIALITY AND © COPYRIGHT

This document is for the sole use of the addressee and Associated Engineering Alberta Ltd. The document contains proprietary and confidential information that shall not be reproduced in any manner or disclosed to or discussed with any other parties without the express written permission of Associated Engineering Alberta Ltd. Information in this document is to be considered the intellectual property of Associated Engineering Alberta Ltd. in accordance with Canadian copyright law.

This report was prepared by Associated Engineering Alberta Ltd. for the account of Township Planning + Design Inc. . The material in it reflects Associated Engineering Alberta Ltd.'s best judgement, in the light of the information available to it, at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Associated Engineering Alberta Ltd. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

TABLE OF CONTENTS

SECTION PAGE NO.
Table of Contents i
List of Tables ii
1 Introduction 1
2 Background 1
3 Deep Utility Servicing 1
$4 \quad$ Potable Water Servicing 2
4.1 Water Demands 2
4.2 Fire Protection Requirements 3
4.3 Water Distribution System Storage Requirements 3
4.4 Recommendations 3
5 Sanitary Sewer Servicing 4
5.1 Sanitary Sewage Generation 4
5.2 Recommendations 5
6 Storm Sewer Servicing 5
6.1 North Pond Catchment 6
6.2 South Pond Catchment 6
7 Shallow Utilities 7
8 Conclusions 7
Closure
Appendix A - Figures

LIST OF TABLES

PAGE NO.

Table 3-1 Land Use Statistics 1
Table 4-1 Design Water Demands 2
Table 4-2 Impact on Potable Water Storage Requirements 3
Table 5-1 Design Sewage Generation 5

1 INTRODUCTION

Township Planning + Design Inc. (the Client) on behalf of 2291463 Alberta Ltd. (the Owner) retained Associated Engineering (AE) to provide a preliminary servicing report for the water, sanitary, and storm systems to be included in an Area Structure Plan (ASP) submission to Foothills County.

2 BACKGROUND

The Owner is developing an ASP for a parcel of land located south of Dunbow Road, between 2 Street and 8 Street E. The 15.81 ha land is proposed to be the Heritage Pointe South residential development. This report represents a conceptual servicing plan that identifies the deep utility servicing requirements for the subject lands.

Additionally, the Client provided the Residential Development Site Plan, and the Storm Management Plan with the accommodated runoff generated by the sub-catchment area for the storm system assessment.

The natural topography of the subject lands slope from south to north, and drain to a natural draw that runs south to north through the site. Elevations within the site range between 1061 m and 1052.5 m , with an average slope on the site of 2\%. A separate stormwater management plan was developed by LGN Consulting Engineering Ltd. The stormwater management plan defines the post development stormwater management requirements for the site.

3 DEEP UTILITY SERVICING

Land uses in the proposed ASP include singe-family and multi-family developments, municipal and environmental reserve, roadways, and other utility rights-of-way. Based on the proposed land use, there will be an estimated 156 residential units, with an average assumed occupancy of 2.7 persons per unit. The total forecasted population of the development is 421 people.

The proposed development will be serviced by the existing Foothills water and wastewater systems operated by Corix Utilities. The new service area is proposed to connect to the existing infrastructure that services Heritage Pointe.

Table 3-1
Land Use Statistics

Total Site Area	16.78 ha		
Subdivided Parcel	0.97 ha		
Net Developable Area	15.81 ha		Population
Land Use		Units	254
Single Family (HR)	5.15 ha	94	113
Multi-Family (RMF)	1.72 ha	42	54
Multi-Family (RMF)	0.99 ha	20	-
Environmental Reserve (ER)	1.35 ha	-	-
Municipal Reserve (MR)	3.84 ha	-	-
Public Utility Lot (PUL)	0.57 ha	-	-
Roads	2.14 ha	-	-
Roads Dedication	0.07 ha	-	421
Total	15.83 ha	156	

4 POTABLE WATER SERVICING

Water Servicing for the ASP area will require installation of new water mains within the proposed roadways and utility right-of-way within the concept plan area. Two offsite water main connections will be required to connect to the existing Heritage Pointe water system. These offsite water mains will create a looped water main that will be sized to provide sufficient capacity to meet the normal operating needs of the system as well as the fire protection requirements for the development. Options for potential water main connection locations are shown on Figure 1 in Appendix A.

Connection 1: One water main connection is required northwest of the ASP area at the intersection of 2 St E and Dunbow Rd. Construction of the new water main would be completed along the existing right-of-way on 2 St E , and connect to the existing water main in Dunbow Road. The construction would have limited impact on motoring traffic in the area.

Connection 2, Option 1: The first option for the second looped connection would be an extension of the watermain east through private lands to $8^{\text {th }}$ Street East, then turning north to connect to the existing water main north of Dunbow Road. Portions of the work would need to be installed by trenchless methods. The first segment would be under the environmental reserve on the east end of the development. The second trenchless segment would be under Dunbow Road. Easements and/or land acquisitions would be required to protect the utility right-of-way of the proposed water main.

Connection 2, Option 2: The second connection could be routed north through the site, past the proposed storm pond, and across the private lands to the north. The watermain could be installed by trenchless methods to eliminate impacts to the private lands that are crossed north of the site. Easements and/or land acquisitions would be required to protect the utility right-of-way of the proposed water main.

The proposed water distribution system is shown on Figure 1. The water tie-in connections to the existing water system are shown on Figure 4. Both figures are located in Appendix A.

4.1 Water Demands

Water demands were estimated based on the proposed land uses, and the assumed design population described in previous sections. A design demand of $370 \mathrm{I} / \mathrm{s}$ per capita was used for planning purposes. Peaking factors were applied to calculate maximum day and peak hour flow rates, these are summarised in Table 4-1.

Table 4-1
Design Water Demands

| Water Demand Scenario | Design Flow |
| :--- | :---: | :---: |
| Design Population | 421 |
| Average Day Demand | $1.8 \mathrm{I} / \mathrm{s}$ |
| Maximum Day Demand Peaking Factor | 2.9 |
| Maximum Day Demand | $5.2 \mathrm{I} / \mathrm{s}$ |
| Peak Hour Factor | 4.0 |
| Peak Hour Demand | $7.2 \mathrm{I} / \mathrm{s}$ |

4.2 Fire Protection Requirements

For the fire protection assessment, it was assumed that a 1.5 coefficient for a wood frame construction and a maximum above-ground floor area of $4,800 \mathrm{ft}^{2}$. This should be reviewed during the design phase for the development. The form of development and design requirements should be clarified at that time.

The preliminary estimate for the required fire flow for the Heritage Pointe South development is $6,305 \mathrm{~L} / \mathrm{min}$ ($105 \mathrm{~L} / \mathrm{s}$) for a duration of 2.0 hours, as indicated in the Fire Underwriters Survey (FUS) Water Supply for Public Fire Protection (2019 Draft).

The number of hydrants and the space between them should be determined during the detail design stage. The FUS recommends a maximum spacing of hydrants in multi-family residential areas of 90 m and in single family residential areas of 180 m .

4.3 Water Distribution System Storage Requirements

Storage requirements related to the proposed development were calculated based on the design flows in Table 4-2. The calculations follow the requirements laid out in the Alberta Environment and Parks Standards and Guidelines, Part 2:

```
S = A + B + (the greater of C or D)
    where S = Total storage requirement, m}\mp@subsup{}{}{3
    A = Fire storage, m}\mp@subsup{}{}{3
    B = Equalization storage (approximately 25% of projected maximum daily design flow), m}\mp@subsup{}{}{3
    C = Emergency storage (minimum of 15% of projected average daily design flow), m}\mp@subsup{}{}{3
    D = Disinfection contact time (T10) storage to meet the CT requirements, m}\mp@subsup{}{}{3}\mathrm{ (not calculated for this report)
```

Table 4-2
Impact on Potable Water Storage Requirements

Storage Requirement	Volume $\left(\mathrm{m}^{3}\right)$
Fire Storage	$757 \mathrm{~m}^{3}$
Equalization Storage ($0.25 \times$ Max Day Demand)	$113 \mathrm{~m}^{3}$
Emergency Storage (0.15 x Average Day Demand) *	$68 \mathrm{~m}^{3}$
Total 1	$937 \mathrm{~m}^{3}$

Note ${ }^{1}$: Does not include disinfection contact time storage requirements.

4.4 Recommendations

The design of the servicing for the development should proceed based on the criteria defined in this report and in cooperation with the utility service providers. At the time of the development of this report, the predicted design flows for the potable water system are not expected to cause the existing water system to operate outside of its' existing capacity. This should be verified with the utility provider at the time of design to identify any changes to the system, and whether or not upgrades to the existing system are required.

The viability of any proposed water main alignments will require further assessment at the design stage in terms of constructability (e.g. site investigation, geotechnical conditions, trenchless methods, etc.), infrastructure costs, possible negotiations and agreements with affected private landowners, utility providers and approvals by Foothills County.

5 SANITARY SEWER SERVICING

Sanitary Sewer Servicing for the ASP area will require installation of new sanitary sewers within the proposed roadways and utility right-of-way within the concept plan area. The servicing concept also includes two lift stations that will pump sewage collected in gravity mains to the existing wastewater system in Heritage Pointe. The area has been divided into two sewerage catchments.

1) Sanitary Catchment Area $\mathbf{1}$ will flow by gravity to a low point east of the multi-family site located in the central part of the site. A small lift station will be constructed to handle flows from the upstream development. Lift Station 1 is proposed to pump west via forcemain to the high point of Sanitary Catchment Area 2 (West Entrance).
2) Sanitary Catchment Area $\mathbf{2}$ will flow by gravity to the low point of the site located at the corner of Dunbow Road and 2nd St E. A lift station will be constructed to handle flows from catchment 1 and 2. The upstream gravity system will need to accommodate these flows as well. Lift Station 2 will pump sewage off site to the Heritage Pointe Development. The forcemain is proposed to run along Dunbow Road, and ultimately crossing Dunbow Road at 8th Street E. The proposed forcemain will connect to the existing system at Ranche Drive and Heaver Gate, to avoid potential capacity constraints in the upstream existing system. The final connection point within the existing system is to be identified during detailed design.

To minimize impacts along Dunbow Road, construction of the forcemain should be installed by horizontal directional drilling to avoid impacts to traffic along the busy road. Easements and/or land acquisitions would be required to protect the utility right-of-way of the proposed water main.

For the tie-in to the existing gravity system in Heaver Gate, a temporary access and traffic deviation will be required. Communication with private landowners is also required, as there will be a temporary disturbance during the installation.

The proposed sanitary sewer system is shown on Figure 2. The sanitary tie-in connections to the existing sanitary system are shown on Figure 4. Both figures are located in Appendix A.

5.1 Sanitary Sewage Generation

Sewage generation rates were estimated based on the proposed land uses, and the assumed design population described in previous sections. A design average dry weather flow rate of $250 \mathrm{l} / \mathrm{s}$ per capita was used for planning purposes. Peaking factors were applied to calculate peak dry weather flow rates. Inflow and infiltration allowances were included based on $0.28 \mathrm{l} / \mathrm{s} / \mathrm{ha}$ for the net developable area. These are summarized in Table 5-1.

Table 5-1
Design Sewage Generation

	Area 1	Area 2
Number of lots	93	63
Estimate Residential Population	251	170
Per Capita Residential Design Flow (L/c/d)	250 //c/d	250 //c/d
Harmon's Peaking Factor	4.11	4.17
Design contributing population	0.25	0.17
Peak Dry Weather Flow (L/s)	$2.99 \mathrm{I} / \mathrm{s}$	$2.05 \mathrm{I} / \mathrm{s}$
Contributing Area (ha)	9.30 ha	5.60 ha
I\&I Contibution (L/s/ha)	$0.28 \mathrm{l} / \mathrm{s} / \mathrm{ha}$	$0.28 \mathrm{l} / \mathrm{s} / \mathrm{ha}$
I\&I Contibution (L/s)	$2.60 \mathrm{l} / \mathrm{s}$	$1.57 \mathrm{I} / \mathrm{s}$
Peak Wet Weather Flow (L/s)	$5.59 \mathrm{l} / \mathrm{s}$	$3.62 \mathrm{l} / \mathrm{s}$
Lift Station Flow	$5.59 \mathrm{l} / \mathrm{s}^{1}$	$9.21 \mathrm{l} / \mathrm{s}^{2}$

Note ${ }^{1}$: Lift Station 1 Peak Flow
Note ${ }^{2}$: Lift Station 2 Peak Flow

5.2 Recommendations

The design of the servicing for the development should proceed based on the criteria defined in this report and in cooperation with the utility service providers. At the time of the development of this report, the design flows are predicted to be greater than the existing capacity of the closest connection points in the existing Heritage Pointe sewer system. As a result, it is recommended that the connection to the existing system be completed at the intersection of Ranche Drive and Heaver Gate, subject to final confirmation of the capacity of the system at that location.

Two lift stations will be required to service the development lands. The second lift station will pump the sewage from the development area to the Heritage Pointe system upstream of the existing Wastewater Treatment Plant (WWTP).

The viability of any proposed sanitary sewer mains and force main alignments will require further assessment at the design stage in terms of constructability (e.g. site investigation, geotechnical conditions, trenchless methods, etc.), infrastructure costs, possible negotiations and agreements with affected private landowners, as well as utility providers and approvals by Foothills County.

6 STORM SEWER SERVICING

The stormwater management system concepts presented are based the Stormwater Management Plan by LGN Consulting Engineering Ltd. The Stormwater Management Plan outlines the drainage concepts that will be implemented in the development. The stormwater management system will follow a traditional dual drainage system with a minor pipe system and a designed overland drainage system that incorporates the roads, curbs, and other designed overland flow paths as well as stormwater management facilities. Catchment boundaries were defined in the Stormwater Management Plan, divided into the North Pond, and South Pond areas.

The proposed stormwater management system is shown on Figure 3 in Appendix A.

6.1 North Pond Catchment

The stormwater runoff boundary along the north pond of the development includes the western portion of the site and is divided at the high point of the site. An area of 4.8 ha will drain to the north dry pond through the major and minor systems, before release to the downstream drainage system.

Design criteria that will be used for the stormwater management system includes:

- Area drainage to a dry pond before discharging offsite,
- An oil grit separator will be required upstream of the pond,
- $70 \mathrm{l} / \mathrm{s} / \mathrm{ha}$ for minor system flows.

The proposed dry pond facility will generally be designed to meet the following criteria:

- Upstream Drainage Area:

$$
4.88 \text { ha }
$$

- Active Storage, Volume: 2,612 m³

Depth: 1.5 m

- Freeboard Elevation 1055.3 m
- Approximate HWL: 1055.0 m
- Pond Bottom: 1053.5 m
- Design detention release rate of $22.9 \mathrm{I} / \mathrm{s}$

The north pond outlet will be connected to the existing ditch located on the south side of Dunbow Road. Construction of the pond outlet will require a control structure that will limit the offsite discharge to the defined design release rate. The outlet to the ditch will require erosion protection. Easements and/ or land acquisitions would be required to protect the utility right of way of the proposed water main. The final arrangement for the discharge will be subject to municipal, Environmental Protection and Enhancement Act, and Water Act approvals.

6.2 South Pond Catchment

The stormwater runoff boundary along the north pond of the development includes the western portion of the site and is divided at the high point of the site. An area of 9.2 ha will drain to the north dry pond through the major and minor systems, before release to the downstream drainage system.

Design criteria that will be used for the stormwater management system includes:

- Area drainage to a dry pond before discharging offsite.
- An oil grit separator will be required upstream of the pond.
- $70 \mathrm{l} / \mathrm{s} /$ ha for minor system flows.

The proposed wet pond facility will generally be designed to meet the following criteria:

- Upstream Drainage Area: 9.2 ha
- Permanent Pool: Volume: $1,561 \mathrm{~m}^{3}$

Depth below water line: $\quad 2.5 \mathrm{~m}$

- Active Storage: Volume: $4,526 \mathrm{~m}^{3}$

> Depth Above NWL:

- Freeboard Elevation $1,053.8 \mathrm{~m}$
- Approximate HWL: $1,053.5 \mathrm{~m}$
- Pond NWL: $1,051.5 \mathrm{~m}$
- Pond Bottom:

1,053.5 m

- Design detention release rate of $43.2 \mathrm{I} / \mathrm{s}$

South Pond Outlet Option 1: The south pond outlet could be to the existing overland flow path that runs through the proposed development. The flow path continues across the private lands north of the site, ultimately discharging to the ditch on Dunbow Road.

South Pond Outlet Option 2: The south pond outlet could be to the existing natural drainage channel at the east edge of the development site. The flow path continues across the private lands north of the site, running through a culver under Downbow Road.

Construction of the pond outlet will require a control structure that will limit the offsite discharge to the defined design release rate. The outlet will require erosion protection. Easements and/or land acquisitions would be required to protect the utility right-of-way of the proposed storm outlet. Each agreement will need to protect the outlet drainage path from alteration or removal. The final arrangement for the discharge will be subject to Municipal, Environmental Protection and Enhancement Act, and Water Act approvals.

7 SHALLOW UTILITIES

It is expected that the shallow utility needs of the development (natural gas, electrical, communications and cable) will be provided by an extension of existing infrastructure in the area. Utility providers in the area should be engaged during subsequent planning and design to determine specific utility requirements onsite, as well as potential upgrades to offsite infrastructure that may be required to support the development.

8 CONCLUSIONS

The Heritage Pointe South development will require the expansion and extension of water and wastewater infrastructure to adequately service the proposed development. The extensions of these systems will be completed in cooperation with the utility provider and will be subject to comprehensive review of downstream capacities. The extension of the proposed water mains and looping within the system will provide adequate supply for both consumption and fire protection. The construction of the tow lift station and its related forcemains will allow the development to connect to the existing system at a point where there is sufficient capacity to convey the flows to the existing wastewater treatment plant.

The proposed stormwater management system will connect to existing natural drainage infrastructure. The proposed stormwater management plan will mitigate the effects of increased impervious surface area on the run-off rates and volumes downstream.

As the development commences, the preliminary and detailed designs should be completed in general accordance with this report. The design criteria and considerations contained in this report should form the basis of these designs. All work will be subject to the review of the relevant authorities, and further assessment at the design stage in terms of constructability (e.g. site investigation, geotechnical conditions, trenchless methods, etc.), infrastructure costs, possible negotiations and agreements with affected private landowners, utility providers and approvals.

CLOSURE

This report was prepared for the Township Planning + Design Inc. as a guideline that provides the Client and the Owner with a conceptual design and future design criteria for the residential development of Heritage Pointe South.

The services provided by Associated Engineering Alberta Ltd. in the preparation of this report were conducted in a manner consistent with the level of skill ordinarily exercised by members of the profession currently practicing under similar conditions. No other warranty expressed or implied is made.

Respectfully submitted,
Associated Engineering Alberta Ltd.

John Crawford, C.E.T.
Project Manager

Adam McDonald, P.Eng.
Project Engineer

APPENDIX A - FIGURES

[^0]: Heritage Crossing | Transportation Impact Assessment | Final
 Project No. 02-22-0118| September 2022

[^1]: ' Dunbow Road - Deerfoot Trail to Macleod Trail, Functional Planning Study, Watt Consulting Group, March 7, 2022.

[^2]: ${ }^{2}$ Rural Approach Standard Policy, Policy Number ADC-RAS-1, Approved September 1, 2011.

[^3]: Heritage Crossing Transportation Impact Assessment Report, Bunt and Associates, September 2022

[^4]: Heritage Crossing | Traffic Review | Final
 Project No. 02-22-0118| May 29, 2023

[^5]: Heritage Crossing | Traffic Review | Final
 Project No. 02-22-0118| May 29, 2023

[^6]: 247 AD PM.syn
 Synchro 11 Report

